自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 百度深度学习课程学习心得

起源 在学习深度学习时,一块GPU是必不可少的。而我,没有。这是一个贫穷的故事,按下不表。经过一番搜索,我找到了AIStudio。这里首先有免费的GPU,这是吸引我的最开始的原因。不过,后来我发现了其他吸引我的东西:百度架构师手把手教深度学习课程。 学习 我开始学习的时候,已经到了高阶引入部分了,...

2020-06-15 21:56:48 141 0

原创 不如跳舞:AI自动合成舞蹈视频

这是我用PaddleHub完成的一个小项目 能干什么:合成舞蹈视频,鬼畜或恶搞同伴的不二选择 什么样的视频:给一段舞蹈视频和一张某某全身照片,合成一段他/她跳舞的视频。 看效果:点这里 更详细的内容欢迎点这里查看 ...

2020-06-01 14:23:30 124 0

原创 KODI配合Siri实现语音控制
原力计划

kodi-siri 介绍 通过siri控制KODI的播放指定电视剧、电影,实现KODI的语音控制 思路简介 语音识别:借助苹果的Siri,也可以用其他工具。 命令发送:借助苹果手机捷径功能 KODI控制:借助KODI的远程控制功能 命令识别:借助本平台kodi-siri kodi-siri为基于F...

2020-05-09 14:50:24 264 0

原创 win10子系统Ubuntu安装mariadb

安装服务 sudo apt-get install mariadb-server 启动服务 在子系统中不能使用原来的:sudo systemctl start mariadb 命令了。 需要使用sudo service mysql start 即可 开始基本设置:sudo mysql_secure...

2020-05-07 15:53:31 94 0

原创 Flask开发遇到的问题及解决方案汇总

问题:flask-migrate数据迁移添加新的表,执行flask db migrate 出现 Target database is not up to date. 解决 首先查看migrate的状态:flask db heads 然后查看当前的状态: flask db current 如果返...

2020-05-07 14:44:27 66 0

原创 如何正确地准备KODI媒体文件
原力计划

KODI媒体库的准备 KODI是个人媒体中心工具,要想发挥它的全部作用,你需要按照一定的规则来准备你的视频文件。 准备工作 视频文件命名: kodi能够读取本地的nfo文件 对于不同的文件类型(电影、电视剧、mv等)要有不同的文件夹,切忌混在一起。 两种方式: 电影有单独的文件夹 每个电影有单独的...

2020-05-02 12:41:14 534 0

原创 pdf书签目录一键生成,再也不怕找不到了

最近在看一个pdf,很长很长,1000多页。这种时候没有导航跳转是很痛苦的。所幸,这个pdf带了导航。但是,带的是一个错误的导航。。。更加痛苦。 经过一整圈的搜索,终于找到了一款神器!pdf补丁丁!功能强大,还免费! 简介 先看界面: 看界面,其貌不扬。但是朴实中,带着一丝坚毅。。。言归正传,先...

2020-04-24 14:33:44 1141 1

原创 python虚拟环境最佳实践
原力计划

众所周知,python的开发环境有点乱。随着python2的逐渐退出,这种情况有所改善。当时仍然存在了各种库的版本不同导致的依赖问题。解决这一问题的利器就是虚拟环境。在虚拟环境中,可以放心大胆的安装各种库,而不用担心会对系统的库产生影响。因此,在python中也有创建、管理虚拟环境的各种工具。其中...

2020-04-23 10:34:05 72 0

原创 Piwigo照片管理平台的安装与使用总结

经过简单调研,从Piwigo和Lychee中选择安装Piwigo。 另外还有一款PhotoPrism目前还在开发之中,先不考虑了。 安装 根据github主页, 先安装需求条件: nginx 安装nginx: sudo yum install nginx 启动nginx: sudo systemc...

2019-09-12 16:08:34 4108 0

原创 数据库备份

在linux下使用mysql或Mariadb时,最好经常备份数据库,不然数据库坏掉了,后果是很严重的。 使用mysqldump命令,可以通过以下方式:(密码紧挨着-p) mysqldump -u username -ppassword DatabaseName > /home/dbback/...

2019-09-12 16:06:37 44 0

原创 wget使用代理

为wget使用代理,可以直接修改/etc/wgetrc,也可以在主文件夹下新建.wgetrc,并编辑相应内容,本文采用后者。 将/etc/wgetrc中与proxy有关的几行复制到~/.wgetrc,并做如下修改: 将其中的http_proxy,https_proxy等设置好: https_pro...

2019-09-12 16:04:57 516 0

原创 neovim

起因 开始在windows下使用官网程序安装得到的vim不支持python(UltiSnips插件需要使用python)。在网上查找解决方案时看到了这个软件。该软件可以与VIM兼容操作和插件,并且python支持问题可以很好解决,因此在windows下面使用这个。特此整理安装使用过程。 安装 参考...

2019-04-11 22:25:12 4170 0

原创 VIM常用插件介绍

插件安装 vim插件网站集合网站:http://vimawesome.com/ 该网站基本搜集了所有的vim插件,而且分好各个类别,并且推出最为受人欢迎的各类插件,而且每一种插件都有相应的安装说明。 当然也可以去去vim插件集合网站 http://www.vim.org 查找对应版本的.vim文件...

2019-04-11 22:21:22 711 0

原创 chevereto图床的使用及与markdown关联

在上一篇博客中,我已经搭建好了chevereto图床。最初的目的就是在markdown中使用图片。因为之前使用七牛的图床失效了。 现在图床已经搭建好了,参照我的这篇博客,我们来利用chevereto的api以及MarkdownPicPicker工具来实现图片的自动上传。 Chevereto API...

2019-01-05 20:39:54 1229 0

原创 安装Chevereto

安装Chevereto安装准备解决方案:配置数据库设置root密码:创建用户更改安全权限修改mariadb默认存储位置创建数据库连接数据库小结 安装准备 官网 按照要求,上传index.php到服务器,得到下面的信息: Your websever lacks some requirements t...

2018-12-31 15:10:15 1936 4

原创 使用rsync进行本地备份

由于购买了Gen10服务器,因此有了备份的需求。经过考察,暂时选用冷备份的方式。也就是定期将数据拷贝到一个移动硬盘上。为了做到自动,准备使用rsync程序。这个程序的功能很强大,在官网上也有详细介绍。这里仅给出我使用的方式。 基本命令 Local: rsync [OPTION...] SRC......

2018-12-29 16:22:42 3263 0

原创 jupyter notebook技巧

jupyter notebook小技巧@TOC 配置文件 在命令行下执行: jupyter notebook --generate-config 将会产生一个配置文件。如果已经产生过忘记在哪了,也可以执行一遍。默认是在c:/Users/username/.jupyter文件夹下。 输出每行的计算结...

2018-12-13 11:10:38 113 0

原创 矩阵分析一子空间和特征分解

线性方程组Ax=b的行视图是超平面,列视图是列向量的线性组合。从这个视角,将矩阵与向量组联系起来了。 5.1 线性相关、线性无关 定义:给定向量组A:a1,a2,...,ama1,a2,...,ama_1,a_2,...,a_m,如果存在不全为零的数k1,k2,,...,kmk1,k2,,...

2018-08-14 11:06:29 4517 2

原创 神经网络和BP算法

5. 神经网络 5.1 前向传播 神经网络分为很多层,包括输入层、输出层和中间的隐层。 使用的符号如下: a(j)iai(j)a_i^{(j)} 第j层,第i个单元的输出(activity) Θ(j)Θ(j)\Theta^{(j)} 第j层向第j+1层传播的系数矩阵,如果在j层有Sj...

2018-07-13 23:21:50 198 0

原创 SVM拓展和SVR支持向量回归

软间隔 在建立SVM模型时,假定正负样本是线性可分的。但是,实际有些时候,样本不是完全线性可分的,会出现交错的情况,例如下图。 这时,如果采用以下模型 minw,b{12∥w∥22},subject toyi(wTxi+b)≥1minw,b{12‖w‖22},subj...

2018-07-10 10:01:10 2115 2

原创 samba服务器配置

在配置samba服务器时,如果采用默认配置是不需要用户名密码即可登录的,这使得在win10中无法连接(win10的安全策略禁止匿名连接),因此需要添加samba用户。步骤如下: 1. 添加系统用户 [root@ubuntu ~]# groupadd linuxsir -g 6000 [roo...

2018-07-08 16:42:26 479 0

原创 信息论知识:互信息、交叉熵、KL散度

信息论的基本想法是一个不太可能的事件居然发生了,要比一个非常可能的事件发生,能提供更多的信息。消息说:‘‘今天早上太阳升起’’ 信息量是如此之少以至于没有必要发送,但一条消息说:‘‘今天早上有日食’’ 信息量就很丰富。 我们想要通过这种基本想法来量化信息。定义三个性质 非常可能发生的事件信息...

2018-07-05 22:13:08 1671 0

原创 凸优化学习(二)对偶和SVM

4.4 对偶问题 对于有约束的优化问题。约束优化问题的一般形式为: minimizesubject.tof0(x)fi(x)≤0fori=1,2,...,mhi(x)=0fori=1,2,...,pminimizef0(x)subject.tofi(x)≤0fori=1,2,...,mhi(x...

2018-07-04 14:04:33 2310 0

原创 凸优化学习(一)凸集与凸函数、凸优化问题

4.1 凸集 convex sets 仿射集(Affine Sets):如果一个集合C∈RnC∈RnC\in\mathbb{R}^n 是仿射的,则在C中两点的直线也在C中,若x1∈C,x2∈C,则x=θx1+(1−θ)x2 ∈C,θ∈Rx1∈C,x2∈C,则x=...

2018-07-01 22:23:36 7789 0

原创 线性回归

假设函数 损失函数 优化方法 梯度下降法 Normal Equation 不可逆 过拟合和正则化 梯度下降法 Normal Equation 技巧 技巧1:feature scaling 技巧2:判断收敛和选择步长 属性选择和多项式回归 假设函数 hyp...

2018-06-25 22:17:22 772 0

原创 将博客搬至CSDN

将博客搬至CSDN 看了一圈,还是比较喜欢CSDN的编辑器 posted on 2018-06-25 21:42 simppy 阅读(...) 评论(...) 编辑 收藏

2018-06-25 21:42:00 67 0

原创 HG220GS-U光猫修改桥接记录

HG220GS-U光猫修改桥接记录 背景 最近换了光纤,装了光猫,型号是HG220GS-U,软件版本E00L3.01。改光猫自带wifi功能,和路由器一样,经过简单的设置就可以上网了。本来用的挺好,但是家里电子设备不少,后来发现ipad不能上网了。猜测有可能是光猫连接数量有...

2017-10-30 22:13:00 4302 0

原创 第三章 傅里叶级数

第三章 傅里叶级数     一些概念 分段光滑 讨论在某个区间上的函数f(x),如果该区间可以被分成段,使得每段内的函数f(x)是连续的,且其导数df/dx也是连续的,那么称为函数f(x)在此区间上分段光滑。 傅里叶收敛定理 在−L≤x≤L区间上函数f(x)和它的傅里叶...

2017-09-05 17:23:00 187 0

原创 Markdown最佳实践

Markdown最佳实践 Markdown 最佳实践 结合目前看到的信息,总结使用Markdown的最方便的方式。 我的需求是: 能够配合各种笔记软件使用,目前主要使用的是为知笔记和有道笔记。笔记的内容需要记录代码及数学公式,因此这两方面的支持很重要。 经常需要插入...

2017-09-05 14:39:00 216 0

原创 分离变量法

分离变量法 目录 1. 线性 2. 齐次 3. 线性方程解叠加原理 4. 在有限端处具有零温度的热传导方程 (1)乘积解形式 (2)分离变量 (3)不定常方程 (4)边值问题 a. 当\(\lambda >0\) b. 当\(\lambda = 0\) c....

2017-09-04 10:03:00 631 0

原创 第二章 分离变量法

第二章 分离变量法     1. 线性2. 齐次3. 线性方程解叠加原理4. 在有限端处具有零温度的热传导方程(1)乘积解形式(2)分离变量(3)不定常方程(4)边值问题a. 当λ>0b. 当λ=0c. 当λ<0(5) 得到乘积解(6)叠加原...

2017-09-01 15:33:00 911 0

原创 第一章 热传导方程

第一章 热传导方程 目录如下: 1. 推导一维杆的热传导方程:从微分及积分角度分别进行了推导 2. 初值和边界条件:初值是与时间相关、边值与空间相关 3. 二维及三维热传导方程推导:从积分角度推导,得到泊松方程和拉普拉斯方程 4. 拉普拉斯算子的各种形式:在直角坐标系、...

2017-09-01 15:32:00 4360 0

原创 高阶线性微分方程-常微分方程

高阶线性微分方程-常微分方程 这里讨论常微分方程。常微分方程的阶数就是函数求导的最高次数。这里以二阶线性微分方程为例。 形如方程5的称为二阶线性微分方程。   线性的概念定义为:   下面讨论 二阶线性微分方程,这些性质也可以推广到n阶线性方程:   1. 线...

2017-09-01 15:15:00 538 0

原创 git最佳实践

git最佳实践   1. 本地设置 $ git config --global user.name "John Doe" $ git config --global user.email johndoe@example.com 2. 以下分为两种情况...

2017-09-01 15:13:00 49 0

原创 使用Eclipse查看java源码

查看源码​ 1. java的源码存放在安装目录下,jdk_version/src.zip。需要手动进行解压。 在MAC下可以使用以下命令来查找:/usr/libexec/java_home。一般都存放在:/Library/Java/JavaVirtualMachines/jdk1.8.0_5...

2015-08-22 21:01:28 697 0

原创 JFrame, JPanel, JComponent

在进行GUI编写时,经常会遇到这几个类。它们之间的关系是怎么样的呢?这需要从包含层次(containment hierarchy)说起。以下内容参考java tutorials。 Swing库提供了3个顶层容器类(Top-Level container class): JFrame, JDial...

2015-08-22 13:28:19 2126 0

原创 使用包内资源

这里的资源包括应用程序需要使用的数据文件,包括图像,声音,文本或二进制文件。在程序内访问这些资源需要以下步骤: 获取具有资源的Class对象,使用继承自Object类的getClass()函数。 对于图像或声音使用Class类的public URL getResource(String name)...

2015-08-22 13:24:57 248 0

原创 打包jar文件

如何手动打包jar,如何避免出现无法加载主程序的问题。

2015-08-21 15:44:17 310 0

提示
确定要删除当前文章?
取消 删除