高等数学笔记-苏德矿-第十章-曲线积分和曲面积分-第二节-第一类曲面积分

高等数学笔记-苏德矿

第十章 曲线积分和曲面积分

第二节 第一类曲面积分

第一类曲面积分也称数量值函数的曲面积分。

一、第一类曲线积分的概念

一点的面密度问题。

在这里插入图片描述

01 解决问题前的基本概念

在这里插入图片描述

02 由问题引入积分的定义

问题:设 Σ \Sigma Σ 是有界曲面, μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 是密度函数且连续,求曲面 Σ \Sigma Σ 的质量 M M M

分析:经典的“分匀和精”
∀   ( ξ i , η i , ς i ) ∈ Δ Σ i    ,    Δ M i ≈ f ( ξ i , η i , ς i ) Δ S i   ,   i = 1 , 2 , ⋯ M = ∑ i = 1 n Δ M i ≈ ∑ i = 1 n f ( ξ i , η i , ς i ) Δ S i    ,    lim ⁡ λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i = M \begin{aligned} & \forall\ \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\in\Delta \Sigma_i \ \ , \ \ \Delta M_i\approx f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right) \Delta S_i\ , \ i=1,2,\cdots\\ & M=\sum\limits_{i=1}^n \Delta M_i\approx \sum\limits_{i=1}^n f\left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i \ \ , \ \ \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i=M \end{aligned}  (ξi,ηi,ςi)ΔΣi  ,  ΔMif(ξi,ηi,ςi)ΔSi , i=1,2,M=i=1nΔMii=1nf(ξi,ηi,ςi)ΔSi  ,  λ0limi=1n(ξi,ηi,ςi)ΔSi=M

03 抽离物理背景的数学准备

去掉物理背景,密度 μ = f ( x , y , z ) ⩾ 0 \mu=f(x,y,z)\geqslant0 μ=f(x,y,z)0 舍去,密度 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 连续舍去。

满足可积的必要条件:有界函数 f ( f ( x , y , z ) ) f(f(x,y,z)) f(f(x,y,z))

04 给出第一类曲面积分的定义

f ( x , y , z ) f(x,y,z) f(x,y,z) 在有界曲面 Σ \Sigma Σ 上有定义且有界,若 lim ⁡ λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i λ0limi=1n(ξi,ηi,ςi)ΔSi 极限存在且唯一,

该极限值称为 f ( x , y , z ) f(x,y,z) f(x,y,z) 在有界曲面 Σ \Sigma Σ 上的第一类曲面积分,又称数量值函数曲面积分

f ( x , y , z ) f(x,y,z) f(x,y,z) Σ \Sigma Σ 上可积,记作 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma}f(x,y,z)dS Σf(x,y,z)dS 。即:
∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n ( ξ i , η i , ς i ) Δ S i \iint\limits_{\Sigma}f(x,y,z)dS=\lim \limits_{\lambda \rightarrow 0} \sum\limits_{i=1}^{n} \left(\xi_{i}, \eta_{i}, \varsigma_{i}\right)\Delta S_i Σf(x,y,z)dS=λ0limi=1n(ξi,ηi,ςi)ΔSi
否则称 f ( x , y , z ) f(x,y,z) f(x,y,z) Σ \Sigma Σ 上不可积。

极限存在且唯一的含义:和式极限值与曲面的分割方法和曲面上取点方式均无关。

二、第一类曲面积分的定理和性质

01 第一类曲面积分的物理意义

∬ Σ f ( x , y , z ) d S \iint \limits_{\Sigma}f(x,y,z)dS Σf(x,y,z)dS 存在,且 f ( x , y , z ) ⩾ 0 f(x,y,z)\geqslant0 f(x,y,z)0,则 ∬ Σ f ( x , y , z ) d S \iint\limits_{\Sigma}f(x,y,z)dS Σf(x,y,z)dS 表示密度 μ = f ( x , y , z ) \mu=f(x,y,z) μ=f(x,y,z) 曲面块 Σ \Sigma Σ 的质量 M M M

特别地, f ( x , y , z ) ≡ 1 f(x,y,z)\equiv1 f(x,y,z)1,则 ∬ Σ 1 d S = ∬ Σ d S = S \iint \limits_{\Sigma}1dS=\iint \limits_{\Sigma}dS=S Σ1dS=ΣdS=S

02 第一类曲面积分的性质

第一类曲面积分具有二重积分的所有性质。

或者说,二重积分是特殊的第一类曲面积分。

03 可积的充分条件

f ( x , y , z ) f(x,y,z) f(x,y,z) 在**有界分片光滑**曲面 Σ \Sigma Σ 上连续,则 f ( x , y , z ) f(x,y,z) f(x,y,z) Σ \Sigma Σ 上可积。反之不成立。

分片:把这个曲面分成几块。

光滑:函数对所有变量的偏导数连续且不同时为 0 0 0

实际意义:曲面上的切平面在曲面上连续地变动;曲面上切平面的法向量构成的向量函数连续。

三、第一类曲面积分的计算

Q = ∬ Σ f ( x , y , z ) d S   ⇔   d Q = f ( x , y , z ) d S   ,   ( x , y , z ) ∈ Σ Q=\iint\limits_{\Sigma}f(x,y,z)dS\ \Leftrightarrow \ dQ=f(x,y,z)dS \ , \ (x,y,z)\in\Sigma Q=Σf(x,y,z)dS  dQ=f(x,y,z)dS , (x,y,z)Σ

Σ : z = z ( x , y )   ,   ( x , y ) ∈ σ \Sigma:z=z(x,y)\ , \ (x,y)\in\sigma Σ:z=z(x,y) , (x,y)σ
Q = ∬ Σ f ( x , y , z ) d S   ,   Σ : z = z ( x , y )    光 滑 曲 面 , 则 有 : Q = ∬ Σ f ( x , y , z ) d S = ∬ σ f ( x , y , z ( x , y ) ) ⋅ 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   ⋅ d σ \begin{aligned} & Q=\iint \limits_{\Sigma}f(x,y,z)dS\ , \ \Sigma:z=z(x,y)\ \ 光滑曲面,则有:\\ & Q=\iint \limits_{\Sigma}f(x,y,z)dS=\iint \limits_{\sigma}f(x,y,z(x,y))\cdot\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}\ \cdot d\sigma \end{aligned} Q=Σf(x,y,z)dS , Σ:z=z(x,y)  :Q=Σf(x,y,z)dS=σf(x,y,z(x,y))1+(xz)2+(yz)2  dσ

对于 x = x ( y , z ) x=x(y,z) x=x(y,z) y = y ( z , x ) y=y(z,x) y=y(z,x) 的曲面,经坐标轮换可得到类似结论:
Q x = ∬ Σ f ( x ( y , z ) , y , z ) d S   ,   Σ : x = x ( y , z )    光 滑 曲 面 , 则 有 : Q x = ∬ Σ f ( x ( y , z ) , y , z ) d S = ∬ σ f ( x ( y , z ) , y , z ) ⋅ 1 + ( ∂ x ∂ y ) 2 + ( ∂ x ∂ z ) 2   ⋅ d σ Q y = ∬ Σ f ( x , y ( z , x ) , z ) d S   ,   Σ : y = y ( z , x )    光 滑 曲 面 , 则 有 : Q y = ∬ Σ f ( x , y ( z , x ) , z ) d S = ∬ σ f ( x , y ( z , x ) , z ) ⋅ 1 + ( ∂ y ∂ z ) 2 + ( ∂ y ∂ x ) 2   ⋅ d σ \begin{aligned} & Q_x=\iint \limits_{\Sigma}f(x(y,z),y,z)dS\ , \ \Sigma:x=x(y,z)\ \ 光滑曲面,则有:\\ & Q_x=\iint \limits_{\Sigma}f(x(y,z),y,z)dS=\iint \limits_{\sigma}f(x(y,z),y,z)\cdot\sqrt{1+(\frac{\partial x}{\partial y})^2+(\frac{\partial x}{\partial z})^2}\ \cdot d\sigma\\ & Q_y=\iint \limits_{\Sigma}f(x,y(z,x),z)dS\ , \ \Sigma:y=y(z,x)\ \ 光滑曲面,则有:\\ & Q_y=\iint \limits_{\Sigma}f(x,y(z,x),z)dS=\iint \limits_{\sigma}f(x,y(z,x),z)\cdot\sqrt{1+(\frac{\partial y}{\partial z})^2+(\frac{\partial y}{\partial x})^2}\ \cdot d\sigma \end{aligned} Qx=Σf(x(y,z),y,z)dS , Σ:x=x(y,z)  :Qx=Σf(x(y,z),y,z)dS=σf(x(y,z),y,z)1+(yx)2+(zx)2  dσQy=Σf(x,y(z,x),z)dS , Σ:y=y(z,x)  :Qy=Σf(x,y(z,x),z)dS=σf(x,y(z,x),z)1+(zy)2+(xy)2  dσ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值