直接插入排序在以下情况下效率很高:
1、记录本身就是基本有序的,只需要少量的插入操作,就可以完成整个记录集的排序工作。
2、记录数比较少的时候。
将原本有大量记录数的记录进行分组,分割成若干个子序列,每个子序列待排序的记录个数就比较少了,然后在这些子序列内分别进行直接插入排序,当整个序列都基本有序时,再对全体记录进行一次直接插入排序。
基本有序:小的关键字基本在前面,大的基本在后面,不大不小的基本在中间。
分割待排序记录的目的:减少待排序记录的个数,并使整个序列向基本有序发展。
采取跳跃分割的策略:将相距某个“增量”的记录组成一个子序列,这样才能保证在子序列内分别进行直接插入排序后得到的结果是基本有序而不是局部有序。
希尔排序:将关键字较小的记录,不是一步一步地往前挪动,而是跳跃式地往前挪动,每次完成一轮循环后,整个序列朝着有序迈进一步。
import java.util.Arrays;
public class Solution {
public static void main(String[] args) {
Solution s = new Solution();
int[] arr = {4,5,1,6,2,7,3,8,8,4};
s.ShellSort(arr);
System.out.println(Arrays.toString(arr)); //输出:[1, 2, 3, 4, 4, 5, 6, 7, 8, 8]
}
private void ShellSort(int[] arr)
{
int increment = arr.length;
while (increment > 1)
{
increment = increment / 3 + 1;
for (int i = increment; i < arr.length; i++)
{
if (arr[i] < arr[i - increment])
{
int save = arr[i];
int j = i - increment;
for (; j >= 0 && arr[j] > save; j = j - increment)
arr[j + increment] = arr[j];
arr[j + increment] = save;
}
}
}
}
}
希尔排序复杂度分析:
希尔排序的关键:将相隔某个增量的记录组成一个子序列,实现跳跃式的移动,使得排序效率提高。
增量序列的最后一个增量值必须为1。
时间复杂度为O(n^(3/2)),优于直接插入排序的O(n^2)。
由于记录是跳跃式的移动,希尔排序并不是一种稳定的排序算法。