LSTM模型在假新闻检测中的应用

本文探讨了在假新闻检测中应用LSTM模型,利用Python和Keras库构建模型,通过预处理文本、构建词汇表、填充序列、划分数据集,以及构建包含嵌入层、LSTM层和全连接层的模型,训练后在测试集上取得了良好的性能,展示了深度学习在假新闻识别中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假新闻(Fake News)是指故意编造、虚假或误导性的新闻信息,其目的往往是传播谣言、误导读者或者影响公众舆论。随着社交媒体的普及和信息的快速传播,假新闻问题变得日益严重。为了有效地识别和过滤假新闻,机器学习和自然语言处理(NLP)技术被广泛应用。其中,长短时记忆网络(LSTM)是一种常用的深度学习模型,具有在序列数据中捕捉长期依赖关系的优势,因此在假新闻检测中具有良好的应用潜力。

在这篇文章中,我们将介绍如何使用LSTM模型来检测假新闻。我们将使用Python编程语言和Keras库来实现我们的模型。以下是代码的实现:

import numpy as np
from keras.models import Sequential
from keras.layers import LSTM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值