MoonPalace - Moonshot AI 月之暗面 Kimi API 调试工具 使用示例

本文主要用于在PHP中使用KIMI AI进行面试对话项目的调试功能的解析【仅供参考】

首先先把API文档链接放在这:

https://platform.moonshot.cn/docs/guide/use-moonpalace

操作次序:

1. 第一步安装依赖及调试器

我采用的是Moonshot AI 即月之暗面旗下的KIMI AI大模型文档进行实现,首先是需要通过GO工具链,如果机器没有GO依赖的情况,则需要先安装GO依赖,并将依赖bin目录路径绑定到PATH中,

然后通过 GO 命令 安装KIMI AI的GO项目调试器

go install github.com/MoonshotAI/moonpalace@latest

安装成功后允许moonpalace 命令来检查是否安装成功,

moonpalace

返回参数示例:

2. 第二步以流式输出模式启动服务器

安装结束后 需要启动服务器命令,默认端口为9988,需要修改端口的话,需要通过 --post重新指定端口

$ moonpalace start --port <PORT>

启动方式有两种:流式和非流式输出模式

非流式输出模式,一次性输入一次性返回,仅支持一次返回;具备完整性

流式输出模式,可以按照流式数据块的形式进行一边生成结果一边返回响应数据;具备低延迟,实时交互的优点

我们选取的强制流式输出模式:

$ moonpalace start --port <PORT> --force-stream

### 关于 Kimi1.5 API使用教程 #### 目录结构与初始化设置 对于Kim-Free-API项目,其基本的目录结构、启动文件以及配置文件已经得到了详细的介绍[^1]。这有助于开发者快速上手并理解如何构建基于此框架的应用程序。 #### 接口调试与集成指南 针对API的具体应用,在线调用之外还有更深入的方式可供探索。以TextIn通用文档解析为例,不仅支持在线操作,同时也提供详尽的API接口用于开发者的本地测试和集成工作[^2]。此类API通常会给出完整的请求格式(包括但不限于HTTP方法、URL路径)、所需参数列表及其意义解释等内容;同时也会展示可能返回的结果形式——无论是成功还是失败情况下所对应的响应消息体样式及状态码定义等重要细节。 #### Python 实现案例分析 当涉及到具体编程语言层的操作时,可以参考Python环境下利用Kimi大模型完成特定任务的方法论。比如为了达成上传文档并与之交互的目标,可以通过编写相应的脚本来实现这一过程中的各个环节:从准备待发送的数据包直至接收来自服务器端反馈信息为止的一系列动作都可以被封装成易于管理的功能模块[^3]。 ```python import requests def upload_document(file_path, prompt_text): url = "https://api.kimifree.com/v1/upload" files = {'file': open(file_path,'rb')} data = {"prompt": prompt_text} response = requests.post(url, files=files, json=data) return response.json() result = upload_document('example.pdf', '请总结这份报告的主要观点') print(result) ``` #### 开发环境搭建提示 考虑到某些高级功能或许依赖额外的技术栈作为支撑条件之一,如MoonPalace所提供的服务就需要确保环境中已正确安装Go编译器及相关组件才能顺利执行后续步骤[^4]。因此建议初次接触这类平台的新用户提前做好相应准备工作,以免遇到不必要的麻烦。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值