月之暗面Kimi多模态图片理解模型 API 发布

2025年1月15日,北京月之暗面科技有限公司宣布全新多模态图片理解模型moonshot-v1-vision-preview正式发布,该模型完善了moonshot-v1模型系列的多模态能力,助力Kimi更好地理解世界。

Vision模型具备强大的图像识别能力,能准确识别图像中的复杂细节和细微差别,无论是食物还是动物,都能区分出相似但不相同的对象。例如,面对16张相似的人眼较难区分的蓝莓松饼和吉娃娃图片,Vision模型能精确地区分和识别。

Vision模型还拥有国内领先的高级图像识别能力,在OCR文字识别和图像理解场景中表现优异,比普通文件扫描和OCR识别软件更加准确,能识别收据单、快递单等潦草的手写内容。

在这里插入图片描述
Vision视觉模型支持多轮对话、流式输出、工具调用、JSON Mode、Partial Mode等特性,但暂不支持联网搜索,不支持创建带有图片内容的Context Cache,但支持使用已创建成功的Cache调用Vision模型,不支持URL格式的图片,目前仅支持使用base64编码的图片内容。

模型计费
模型计费单位价格
moonshot-v1-8k-vision-preview1M tokens¥12.00
moonshot-v1-32k-vision-preview1M tokens¥24.00
moonshot-v1-128k-vision-preview1M tokens¥60.00
### 使用Python调用Kimi模型API 为了使用Python调用Kimi模型API,通常需要遵循特定的接口定义来发送请求并处理响应。下提供了一个基本的例子说明如何通过HTTP POST方法向API端点发送查询,并接收返回的结果。 首先,确保安装了`requests`库用于发起网络请求: ```bash pip install requests ``` 接着,在Python脚本中导入必要的模块并设置访问令牌(如果API要求认证),构建请求体以及执行POST请求获取数据如下所示: ```python import json import requests def call_kimi_api(prompt, api_key): url = 'https://api.kimi.example.com/v1/models/kimi:predict' # 假设这是官方提供的API地址 headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } payload = { "inputs": [ {"text": prompt} ] } response = requests.post(url=url, data=json.dumps(payload), headers=headers) if response.status_code == 200: result = response.json() return result['outputs'][0]['generated_text'] else: raise Exception(f'Request failed with status code {response.status_code}: {response.text}') if __name__ == '__main__': api_key = '<your-api-key-here>' # 用户需替换为自己实际拥有的有效API密钥 user_input = input('请输入您想要询问的内容:') output = call_kimi_api(user_input, api_key) print(output) ``` 上述代码展示了怎样利用Python中的`requests`库来进行一次简单的文本生成任务调用[^1]。请注意这里的URL仅为示意用途;真实的API路径应当参照Kimi模型文档给出的信息进行配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值