对阵矩阵特征向量两两正交的证明

假设矩阵 A A A是一个对称矩阵, x i x_i xi x j x_j xj是矩阵 A A A的任意两个特征向量, λ i \lambda_i λi λ j \lambda_j λj是与 x i x_i xi x j x_j xj相对应的特征值,则有:
(1) A x i = λ i x i Ax_i=\lambda_i x_i \tag{1} Axi=λixi(1)
(2) A x j = λ j x j Ax_j=\lambda_j x_j \tag{2} Axj=λjxj(2)
将式(1)的两边左乘以 x j T x_j^T xjT ,可得:
(3) x j T A x i = λ i x j T x i x_j^TAx_i=\lambda_i x_j^T x_i \tag{3} xjTAxi=λixjTxi(3)
因为矩阵 A A A是一个对称矩阵,可以对式(3)的左边做如下变换:
(4) x j T A x i = x j T A T x i = ( A x j ) T x i x_j^TAx_i=x_j^T A^T x_i = (Ax_j)^T x_i \tag{4} xjTAxi=xjTATxi=(Axj)Txi(4)
将式(2)代入式(4),可得:
(5) x j T A x i = ( A x j ) T x i = ( λ j x j ) T x i = λ j x j T x i x_j^TAx_i=(Ax_j)^T x_i = (\lambda_j x_j)^T x_i = \lambda_j x_j^T x_i \tag{5} xjTAxi=(Axj)Txi=(λjxj)Txi=λjxjTxi(5)
结合式(3),可得:
(6) λ i x j T x i = λ j x j T x i \lambda_i x_j^T x_i = \lambda_j x_j^T x_i \tag{6} λixjTxi=λjxjTxi(6)
即: (7) ( λ i − λ j ) x j T x i = 0 (\lambda_i - \lambda_j)x_j^T x_i = 0 \tag{7} (λiλj)xjTxi=0(7)
因为 λ i ≠ λ j \lambda_i \neq \lambda_j λi̸=λj x j T x i x_j^T x_i xjTxi必然等于0。
由于 x i x_i xi x j x_j xj是矩阵 A A A的任意两个特征向量,所以命题得证。

以上内容编辑:崔宾阁

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值