假设矩阵
A
A
A是一个对称矩阵,
x
i
x_i
xi和
x
j
x_j
xj是矩阵
A
A
A的任意两个特征向量,
λ
i
\lambda_i
λi和
λ
j
\lambda_j
λj是与
x
i
x_i
xi和
x
j
x_j
xj相对应的特征值,则有:
(1)
A
x
i
=
λ
i
x
i
Ax_i=\lambda_i x_i \tag{1}
Axi=λixi(1)
(2)
A
x
j
=
λ
j
x
j
Ax_j=\lambda_j x_j \tag{2}
Axj=λjxj(2)
将式(1)的两边左乘以
x
j
T
x_j^T
xjT ,可得:
(3)
x
j
T
A
x
i
=
λ
i
x
j
T
x
i
x_j^TAx_i=\lambda_i x_j^T x_i \tag{3}
xjTAxi=λixjTxi(3)
因为矩阵
A
A
A是一个对称矩阵,可以对式(3)的左边做如下变换:
(4)
x
j
T
A
x
i
=
x
j
T
A
T
x
i
=
(
A
x
j
)
T
x
i
x_j^TAx_i=x_j^T A^T x_i = (Ax_j)^T x_i \tag{4}
xjTAxi=xjTATxi=(Axj)Txi(4)
将式(2)代入式(4),可得:
(5)
x
j
T
A
x
i
=
(
A
x
j
)
T
x
i
=
(
λ
j
x
j
)
T
x
i
=
λ
j
x
j
T
x
i
x_j^TAx_i=(Ax_j)^T x_i = (\lambda_j x_j)^T x_i = \lambda_j x_j^T x_i \tag{5}
xjTAxi=(Axj)Txi=(λjxj)Txi=λjxjTxi(5)
结合式(3),可得:
(6)
λ
i
x
j
T
x
i
=
λ
j
x
j
T
x
i
\lambda_i x_j^T x_i = \lambda_j x_j^T x_i \tag{6}
λixjTxi=λjxjTxi(6)
即:
(7)
(
λ
i
−
λ
j
)
x
j
T
x
i
=
0
(\lambda_i - \lambda_j)x_j^T x_i = 0 \tag{7}
(λi−λj)xjTxi=0(7)
因为
λ
i
≠
λ
j
\lambda_i \neq \lambda_j
λi̸=λj,
x
j
T
x
i
x_j^T x_i
xjTxi必然等于0。
由于
x
i
x_i
xi和
x
j
x_j
xj是矩阵
A
A
A的任意两个特征向量,所以命题得证。
以上内容编辑:崔宾阁