[AI教程]TensorFlow入门:手势数字识别

这篇博客是吴恩达课程的编程作业,介绍了使用TensorFlow进行手势数字识别的步骤,包括数据集加载、模型创建、前向传播、成本计算等。作者提供了数据集的链接,并展示了如何测试自己的图片。
摘要由CSDN通过智能技术生成

实验说明

本实验为吴恩达课后编程作业第二课第三周内容,通过引导我们将完成一个深度学习框架,使我们可以更轻松地构建神经网络。编程框架不仅可以缩短编码时间,而且有时还可以执行加速代码的优化。
数据集下载地址:[https://github.com/stormstone/deeplearning.ai/tree/c38b8ea7cc7fef5caf88be6e06f4e3452690fde7]
工具:Jupyter Notebook (tensorflow) + Python 3.6.3
问题陈述:一天下午,我和一些朋友决定教我们的电脑破译手语。 我们花了几个小时在白墙前拍照,想出了以下数据集。 现在,您的工作是构建一种算法,以促进从语言障碍者到不懂手语的人的通信。
训练集:1080个图像(64乘64像素)的符号表示从0到5的数字(每个数字180个图像)。
测试集:120张图片(64乘64像素)的符号,表示从0到5的数字(每个数字20张图片)。
以下是每个数字的示例,以及如何解释我们如何表示标签。 在我们将图像重新降低到64 x 64像素之前,这些是原始图片。
在这里插入图片描述

1、Exploring the Tensorflow Library

1.1 首先导入库:
import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict

%matplotlib inline
np.random.seed(1)
1.2 加载数据集:
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
print(X_train_orig.shape)
print(Y_train_orig.shape)
print(X_test_orig.shape)
print(Y_test_orig.shape)

运行结果展示:
在这里插入图片描述

1.3 图片示例
index = 2
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

运行结果展示:
在这里插入图片描述

1.4 输出数据集信息
# Flatten the training and test images
X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
# Normalize image vectors
X_train = X_train_flatten/255.
X_test = X_test_flatten/255.
# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6)
Y_test = convert_to_one_hot(Y_test_orig, 6)

print ("number of training examples = " + str(X_train.shape[1]))
print ("number of test examples = " + str(X_test.shape[1]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
print(Y_test_orig[0][9])
print(Y_test_orig[0][8])
print(Y_test_orig[0][7])
print(Y_test_orig[0][6]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值