2019IJCAI

本文探讨了评论者之间的合作评分机制,如何通过欧氏距离、spam分数和嵌入权重来评估产品可信度。重点讲解了评论者共评产品的col分数计算,以及如何根据这些因素对评论者进行排名,揭示了在产品推荐中的关键洞察。
摘要由CSDN通过智能技术生成

R(g)— set of reviewers in a group g
P(g)— set of target products reviewed by the reviewers in R(g).
Each reviewer i reviewed a set of products P i P_i Pi
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Ranking:
评论者i, j,co-review了产品p,评论为 c p i 、 c p j c_{p}^{i}、c_p^j cpicpj, 评分 r p i , r p j r_p^i, r_p^j rpi,rpj, 时间 t p i , t p j t_p^i, t_p^j tpi,tpj

  • col分数在这里插入图片描述
  • the collusiveness between two reviewers w.r.t. product p they co-reviewed在这里插入图片描述
  • s p s_p sp is the degree of suspicion of product p
    在这里插入图片描述
  • embedding权重
    在这里插入图片描述
  • ranking:
    1 density(欧氏距离)
    2 spam分数在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值