subgraph neural networks论文笔记

本文详细探讨了Subgraph Neural Networks(SUBGNN),重点关注其子图拓扑结构特性、SubGNN架构以及消息传递过程。SUBGNN旨在捕捉图的局部和全局结构,通过子图级别的消息传递来学习表示。文章介绍了如何通过不同通道的采样函数来选择锚点补丁,并阐述了如何利用这些锚点进行内部和外部结构的学习。此外,还讨论了隐藏层顺序不变性在信息传递中的作用及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Subgraph Neural Network

  • Graph-level representation: loss some finer local structure
  • node-level: preserve local topological structure, detriment the big picture
    在这里插入图片描述
    Problem Formulation:
    给出子图集合 s = { S 1 , S 2 . . . S N } s= \left\{ S_1, S_2...S_N \right\} s={ S1,S2...SN}, SUBGNN给出产生d维子图向量表示的神经信息传递架构Es并进行分类

subgraph拓扑结构properties在这里插入图片描述

Border neighborhood, as with nodes, is defined as the set of nodes within k hops
of any node in S.

SubGNN

在这里插入图片描述

Subgraph level message passing

  • 从图中按通道选取子图作为Anchor patches,从而得到Ap, An, As
    在这里插入图片描述对于每个channel,有sampling函数
    在这里插入图片描述

    1. position channel:
      internal:sample函数对于每个子图只返回一个节点, anchor patches A P A A_{PA} APA, shared across all components in S
      external:anchor patches
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值