异构多智能体多智能体——估计学习法

论文内容翻译

1. 问题背景

本文研究了一个分布式控制系统,其中包含以下组成部分:

  • 一个未知动态的领导者: \dot{x}_0(t) = A_0x_0(t)
  • 多个异构的跟随者,动态如下:\dot{x}_i(t) = A_ix_i(t) + B_iu_i(t)                                            y_i(t) = C_ix_i(t)
  • 其中 i=1,…,N表示不同的智能体。
2. 主要挑战
  • 领导者的动态矩阵 A_0 对所有跟随者都是未知的。
  • 通信网络可能遭受 拒绝服务(DoS)攻击
  • 每个智能体的动态不同(异构性)。
  • 可能发生物理执行器故障。
3. 基于学习的解决方案

作者提出了一个三步解决方案:

A. 分布式鲁棒学习算法

为学习未知的领导者矩阵 A_0,算法步骤为:

  1. 在时间间隔上收集数据样本:

  2. 将其转化为线性方程:

    d(T,hκ)=e(T,hκ)⋅vec(A0​)

    其中:

    • d(T,hκ) 表示状态差分;
    • e(T,hκ)包含积分的状态信息;
    • vec(A_0) 为未知矩阵 A_0 的向量化形式。
B. 分布式鲁棒估计器

在学习到 A_0 后,设计了一个估计器:

其中:

  • w_{ij}(t) = 1 表示通信正常,w_{ij}(t) = 0 表示通信受到 DoS 影响;
  • χ 是估计器增益;
  • x_{0i} 是智能体 i 对领导者状态的估计。
C. 自适应容错控制器

最终控制律为:

u_i(t) = \hat{K}_i(t)\bar{x}_i(t) + \hat{U}_i(t)x_{0i}(t)

并附有以下自适应律:

\dot{\hat{K}}_{ij}(t) = -\Gamma_{1ij}\bar{x}_i^T(t)P_iB_{ij}\bar{x}_i(t)

\dot{\hat{U}}_{ij}(t) = -\Gamma_{2ij}\bar{x}_i^T(t)P_iB_{ij}x_{0i}(t)

4. 拒绝服务攻击处理

系统通过以下方式应对 DoS 攻击:

  • 估计器中的切换机制 w_{ij}(t)
  • 在间歇通信下仍然有效的鲁棒学习;
  • 对满足频率和时长约束的 DoS 攻击提供稳定性保证: 
5. 异构性处理

系统通过以下方式解决异构性问题:

  • 针对每个智能体设计单独的自适应控制器;
  • 为每个智能体动态调整的估计器;
  • 允许不同智能体模型协同工作的控制框架。

以上内容参考自论文《Learning-Based Distributed Resilient Fault-Tolerant Control Method for Heterogeneous MASs Under Unknown Leader Dynamic》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值