混合系统-事件触发策略

事件触发保持更新(Event-Based Hold Updates) 是一种控制策略,在混合系统中用于减少计算负担或控制更新频率。此方法尤其适用于节省资源的场景,比如通信频带受限或电源受限的系统。我们来看如何通过该策略确保系统的渐近稳定性。

事件驱动的保持更新控制策略
  • 控制系统模型:考虑一个连续时间的非线性控制系统,状态方程表示为:

    \dot{\xi} = f(\xi, u)

    其中 ξ 是系统状态,u=κ(ξ)是状态反馈控制策略,使得系统渐近稳定到收敛集 A。

  • 触发条件:为了减少频繁的更新,控制策略不是在每一时刻更新,而是在满足某个事件条件时才触发更新。这种事件触发条件由某个连续函数 σ1:Rn→R≥0​ 决定。具体而言,当系统状态偏离之前的状态超过某个阈值 \sigma_1(x_1)时,触发控制值的更新。

  • 混合系统建模:整个闭环系统可以建模为一个混合系统,定义如下:

    • 流动集 C:C = \{ x \in \mathbb{R}^{2n} : |x_1 - x_2| \leq \sigma_1(x_1) \}
    • 跳跃集 D:D = \{ x \in \mathbb{R}^{2n} : |x_1 - x_2| \geq \sigma_1(x_1) \}
    • 流动映射 F(x):在流动集 C 内,系统按照方程 \dot{\xi} = f(\xi, \kappa(\xi)) 演化。
    • 跳跃映射 G(x):在跳跃集 D 内,状态 x_1​ 被更新到当前的 x_2​,实现保持更新。
解析与意义
  • 事件驱动的优势:与传统的时间触发控制不同,事件驱动的控制在状态变化显著时才更新控制信号,因此可以有效减少控制器的激活频率,从而节省计算资源和通信开销。

  • 稳定性保证:在满足混合系统的基本假设条件下,例如 F 的局部 Lipschitz 连续性,跳跃映射 G 的单一性,以及合适的李雅普诺夫函数条件,可以证明系统具有预渐近稳定性。也就是说,尽管系统不是每时刻都更新控制,但仍然可以保证状态会收敛到目标集 A。

具体步骤
  1. 定义李雅普诺夫函数 V(x):在满足混合系统的稳定性条件下,为系统定义一个李雅普诺夫函数 V(x),并使其在跳跃和流动中都满足特定的递减条件。

  2. 设置触发条件:确定触发更新的事件条件,确保在流动集 C 内状态变化较小时控制信号保持不变,而一旦偏差增大到超过 \sigma_1(x_1),系统便触发更新。

  3. 验证渐近稳定性:利用李雅普诺夫分析法,验证系统在该控制策略下的稳定性。如果满足特定条件,可以确保系统的状态收敛到目标集 A,从而实现渐近稳定。

在混合系统中,李雅普诺夫函数的应用和普通控制系统有所不同,主要体现在以下几个方面:

  1. 流动集 (C) 和跳跃集 (D)

    • 在混合系统中,状态空间被分为流动集CC 和跳跃集 D。流动集代表系统可以持续演化的区域,而跳跃集则表示系统必须跳跃的区域。这些集合帮助定义了系统状态如何在连续和离散动态之间转换。
  2. 流动映射 (F) 和跳跃映射 (G)

    • 流动映射 F(x) 定义了系统在流动集 C 中的演化规律。换句话说,它描述了系统在连续演化时的状态变化率。
    • 跳跃映射 G(x) 则定义了系统在跳跃集 D 中的跳跃规则。即,当系统状态进入跳跃集 D 时,根据跳跃映射 G,系统的状态会发生突变。
  3. 李雅普诺夫函数在混合系统中的使用

    • 在混合系统中,李雅普诺夫函数需要满足特殊条件,以确保系统在混合动态下的稳定性。具体来说,对于流动映射 F(x) 和跳跃映射 G(x),李雅普诺夫函数 V(x) 应该满足:
      • 在流动集中,李雅普诺夫函数沿着流动映射的方向非增,即 ∇V(x)⋅F(x)≤0。
      • 在跳跃集中,李雅普诺夫函数在跳跃后不能增加,即 V(G(x))≤V(x)。
    • 这些条件确保了系统在流动和跳跃阶段的稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值