残差网络(ResNet)

本文介绍了残差网络(ResNet)中的关键组件——残差块,以及ResNet-18模型的构建原理。文章详细解释了如何通过残差学习和跳跃连接解决深层网络性能退化的挑战,并给出了代码示例来展示ResidualBlock和ResNet-18的实现过程。
摘要由CSDN通过智能技术生成

简介

残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。 于是,残差块(residual blocks)便诞生了,这个设计对如何建立深层神经网络产生了深远的影响。
即随着网络层数的增加,网络的性能反而不再提升,甚至下降。残差块通过引入“残差学习”(residual learning)来缓解这一问题,使得网络能够更容易地学习到深层特征。
残差块的输入不仅传递到卷积层等操作中,还通过一个跳跃连接(也称为快捷连接)直接传递到后面的层。这个跳跃连接可以是恒等连接(identity connection),也可以是经过一些卷积层或其他操作的连接。

卷积层的输出与输入通过跳跃连接进行逐元素相加(element-wise addition)。这样做的目的是将输入中的信息保留下来,并与学习到的残差特征相结合。
残差块的原理可以通过以下公式表示:

输出=激活函数(卷积层1(输入))+激活函数(卷积层2(输入))

残差块

案例:

import torch
import torch.nn as nn

class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out

# 假设我们有一个输入张量,大小为(1, 64, 56, 56)
# 这里假设输入是一个来自前面层的特征图
input_tensor = torch.randn(1, 64, 56, 56)

# 创建一个残差块实例,其中输入和输出通道数都是64
residual_block = ResidualBlock(in_channels=64, out_channels=64)

# 通过残差块传递输入,查看输出
output = residual_block(input_tensor)
print(output.shape)  # 应该输出: torch.Size([1, 64, 56, 56])

在这里插入图片描述

经典ResNet-18

import torch
import torch.nn as nn
from torch.nn import functional as F
class Residual(nn.Module):
    '''
    这是一个残差块的实现,它是ResNet的基本构建单元。
    input_channels:输入特征图的通道数。
    num_channels:残差块内部使用的通道数。
    use_1x1conv:是否使用1x1卷积来调整输入特征图的通道数。
    strides:卷积层的步长,用于在第一个残差块中改变特征图的尺寸。
    '''
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        # self.conv1 和 self.conv2:两个3x3的卷积层,用于提取特征和学习残差。
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            # self.conv3:一个可选的1x1卷积层,用于在第一个残差块中调整通道数和尺寸。
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        # self.bn1 和 self.bn2:两个批归一化层,用于规范化卷积层的输出。
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)
    # forward 方法定义了残差块的前向传播过程,包括卷积、批归一化、激活函数和跳跃连接的加和。
    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)

def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    '''
    这个函数用于创建多个残差块的序列。
    input_channels 和 num_channels:输入和输出特征图的通道数。
    num_residuals:残差块的数量。
    first_block:是否为第一个残差块,如果是,将使用1x1卷积和步长为2的卷积来改变特征图的尺寸。
    '''
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


# 构建 ResNet 网络
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))



net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1,1)),
                    nn.Flatten(), nn.Linear(512, 10))

print(net)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值