初等证明:第九章9.1节整数的阶和原根

20 20 20题:令 p p p是费马数 F n = 2 2 n + 1 F_n=2^{2^n}+1 Fn=22n+1的一个素因子.
a ) a) a)证明 o r d p 2 = 2 n + 1 ord_p2=2^{n+1} ordp2=2n+1.
b ) b) b) a ) a) a)推出 2 n + 1 ∣ p − 1 2^{n+1} \mid p-1 2n+1p1,从而 p p p一定形如 2 n + 1 k + 1 2^{n+1}k+1 2n+1k+1.

思路:容易看出 2 2 n + 1 = ( 2 2 n ) 2 = ( F n − 1 ) 2 ≡ 1 ( m o d F n ) 2^{2^{n+1}} = (2^{2^{n}})^2 = (F_n-1)^2 \equiv 1 \pmod {F_n} 22n+1=(22n)2=(Fn1)21(modFn)
因此 2 2 n + 1 ≡ 1 ( m o d p ) ⇒ p ∣ ( 2 2 n + 1 − 1 ) 2^{2^{n+1}} \equiv 1 \pmod p \Rightarrow p \mid (2^{2^{n+1}} - 1) 22n+11(modp)p(22n+11),所以接下来应该求 ( 2 2 n + 1 − 1 ) (2^{2^{n+1}} - 1) (22n+11) F n F_n Fn的公因子,结合公因子是否能够被 p p p整除

a ) a) a)证:
∵ 2 2 n + 1 − 1 = ( 2 2 n − 1 ) ( 2 2 n + 1 ) = ( 2 2 n − 1 ) F n \because 2^{2^{n+1}} - 1 = (2^{2^n} - 1)(2^{2^n} + 1) = (2^{2^n} - 1)F_n 22n+11=(22n1)(22n+1)=(22n1)Fn

∴ \therefore p ∣ F n ∣ ( 2 2 n + 1 − 1 ) p \mid F_n \mid (2^{2^{n+1}} - 1) pFn(22n+11)

∴ o r d p 2 ∣ 2 n + 1 \therefore ord_p2 \mid 2^{n+1} ordp22n+1

2 t = o r d p 2 2^t = ord_p2 2t=ordp2,假设 t ≤ n t \leq n tn

∵ ( 2 2 t − 1 , F n ) \because (2^{2^t} - 1, F_n) (22t1,Fn)

= ( 2 2 t − 1 , 2 2 n + 1 ) = (2^{2^t} - 1, 2^{2^n}+1) =(22t1,22n+1)

= ( 2 2 t − 1 , 2 2 n + 1 + 2 2 t − 1 ) = (2^{2^t} - 1, 2^{2^n}+1 + 2^{2^t} - 1) =(22t1,22n+1+22t1)

= ( 2 2 t − 1 , 2 2 n + 2 2 t ) = (2^{2^t} - 1, 2^{2^n} + 2^{2^t}) =(22t1,22n+22t)

= ( 2 2 t − 1 , 2 2 n − 2 t + 1 ) = (2^{2^t} - 1, 2^{2^n - 2^t} + 1) =(22t1,22n2t+1),因为 ( 2 2 t − 1 , 2 2 t ) = 1 (2^{2^t} - 1, 2^{2^t}) = 1 (22t1,22t)=1

. . . ... ...

= ( 2 2 t − 1 , 2 0 + 1 ) = (2^{2^t} - 1, 2^0 + 1) =(22t1,20+1),因为 t ≤ n ⇒ 2 n = 2 n − t 2 t t \leq n \Rightarrow 2^n = 2^{n-t}2^t tn2n=2nt2t,只需要 2 n − t 2^{n-t} 2nt次迭代即可

= ( 2 2 t − 1 , 2 ) = (2^{2^t} - 1, 2) =(22t1,2)

∵ p ∣ ( 2 2 t − 1 , F n ) \because p \mid (2^{2^t} - 1, F_n) p(22t1,Fn)

∴ p ∣ 2 \therefore p \mid 2 p2

∵ 2 ∤ F n ⇒ 2 ∤ p \because 2 \nmid F_n \Rightarrow 2 \nmid p 2Fn2p

∴ t > n \therefore t > n t>n

∵ o r d p 2 ∣ 2 n + 1 \because ord_p2 \mid 2^{n+1} ordp22n+1

∴ t = n + 1 \therefore t = n + 1 t=n+1,即 o r d p 2 = 2 n + 1 ord_p2 = 2^{n+1} ordp2=2n+1

b ) b) b)证:
∵ o r d p 2 = 2 n + 1 \because ord_p2=2^{n+1} ordp2=2n+1,即 a ) a) a)中的结论

∵ o r d p 2 ∣ ϕ ( p ) = ( p − 1 ) \because ord_p2 \mid \phi(p) = (p - 1) ordp2ϕ(p)=(p1)

∴ 2 n + 1 ∣ ( p − 1 ) \therefore 2^{n+1} \mid (p - 1) 2n+1(p1)

∴ p = 2 n + 1 k + 1 , k ∈ Z + , p > 1 \therefore p = 2^{n+1}k + 1, k \in Z^+, p > 1 p=2n+1k+1,kZ+,p>1

22 22 22题:
a ) a) a)如果 p p p q q q是不同的奇素数,那么 p q pq pq是基为 2 2 2的伪素数当且仅当 o r d q 2 ∣ ( p − 1 ) ord_q2 \mid (p-1) ordq2(p1) o r d p 2 ∣ ( q − 1 ) ord_p2 | (q-1) ordp2(q1)

思路:由必要性可知 2 p q − 1 ≡ 1 ( m o d p q ) 2^{pq-1} \equiv 1 \pmod {pq} 2pq11(modpq),结合 p p p q q q是不同的奇素数相关的费马小定理

a ) a) a)证:
必要性:
∵ 2 p q − 1 ≡ 1 ( m o d p q ) \because 2^{pq-1} \equiv 1 \pmod {pq} 2pq11(modpq)

∴ p ∣ ( 2 p q − 1 − 1 ) \therefore p \mid (2^{pq-1} - 1) p(2pq11)

∵ p ∣ ( 2 p − 1 − 1 ) \because p \mid (2^{p-1} - 1) p(2p11),费马小定理

∴ p ∣ ( ( 2 p q − 1 − 1 ) − ( 2 p − 1 − 1 ) ) \therefore p | ((2^{pq-1} - 1) - (2^{p-1} - 1)) p((2pq11)(2p11))

= 2 p − 1 ( 2 p q − 1 − ( p − 1 ) − 1 ) = 2^{p-1}(2^{pq-1 - (p-1)} - 1) =2p1(2pq1(p1)1)

= 2 p − 1 ( 2 p ( q − 1 ) − 1 ) =2^{p-1}(2^{p(q-1)} - 1) =2p1(2p(q1)1)

∵ 2 p − 1 ≡ 1 ( m o d p ) \because 2^{p-1} \equiv 1 \pmod p 2p11(modp)

∴ 2 p ≡ 2 ( m o d p ) \therefore 2^p \equiv 2 \pmod p 2p2(modp)

∴ p ∤ 2 p − 1 \therefore p \nmid 2^{p-1} p2p1

∴ 2 p ( q − 1 ) − 1 ≡ 2 q − 1 − 1 ≡ 0 ( m o d p ) \therefore 2^{p(q-1)} - 1 \equiv 2^{q-1} - 1 \equiv 0 \pmod p 2p(q1)12q110(modp)

∴ o r d p 2 ∣ ( q − 1 ) \therefore ord_p2 | (q-1) ordp2(q1),同理可证 o r d q 2 ∣ ( p − 1 ) ord_q2 \mid (p-1) ordq2(p1)

这里每一步都是可逆的,故充分性也可证

综上,证毕

23 23 23题:
证明:如果 p p p q q q是不同的奇素数,那么 p q pq pq是基为 2 2 2的伪素数当且仅当 M p M q = ( 2 p − 1 ) ( 2 q − 1 ) M_pM_q=(2^p-1)(2^q-1) MpMq=(2p1)(2q1)是基为 2 2 2的伪素数.

思路:因为已知 ( 2 a − 1 , 2 b − 1 ) = 2 ( a , b ) − 1 (2^a-1,2^b-1) = 2^{(a, b)} - 1 (2a1,2b1)=2(a,b)1,这是由于其求解步骤与求 ( a , b ) (a, b) (a,b)相同,所以通过证明 p ∣ M p M q − 1 ⋀ q ∣ M p M q − 1 p \mid M_pM_q-1 \bigwedge q \mid M_pM_q-1 pMpMq1qMpMq1即可

证:
必要性:

∵ 2 q − 1 ≡ 1 ( m o d p ) \because 2^{q-1} \equiv 1 \pmod p 2q11(modp),由上面 22 22 22题结论可得

∴ 2 q − 1 ≡ 2 ( 2 q − 1 ) − 1 ≡ 2 − 1 ≡ 1 ( m o d p ) \therefore 2^q-1 \equiv 2(2^{q-1}) - 1 \equiv 2 - 1 \equiv 1 \pmod p 2q12(2q1)1211(modp)

∴ M p M q = ( 2 p − 1 ) ( 2 q − 1 ) ≡ 2 p − 1 ≡ 1 ( m o d p ) \therefore M_pM_q =(2^p-1)(2^q-1) \equiv 2^p-1 \equiv 1 \pmod p MpMq=(2p1)(2q1)2p11(modp)

∴ p ∣ ( M p M q − 1 ) \therefore p \mid (M_pM_q-1) p(MpMq1)

∴ ( 2 p − 1 ) ∣ ( 2 ( M p M q − 1 ) − 1 ) \therefore (2^p-1) \mid (2^{(M_pM_q-1)} - 1) (2p1)(2(MpMq1)1)

同理可证 ( 2 q − 1 ) ∣ ( 2 ( M p M q − 1 ) − 1 ) (2^q-1) \mid (2^{(M_pM_q-1)} - 1) (2q1)(2(MpMq1)1)

∴ 2 ( M p M q − 1 ) ≡ 1 ( m o d M p M q ) \therefore 2^{(M_pM_q-1)} \equiv 1 \pmod {M_pM_q} 2(MpMq1)1(modMpMq)

∴ M p M q \therefore M_pM_q MpMq是以 2 2 2为基的伪素数

而上面的每一步都是可逆的,故充分性也可证

综上,证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值