1.阶及阶的性质(ord)

阶是数论的一大神器。

阶的定义:若 r r r 是最小的满足 a r ≡ 1 ( m o d d ) a^r \equiv1\pmod d ar1(modd) 的正整数。则称 o r d d ( a ) = r ord_d(a)=r ordd(a)=r。例如: o r d 3 ( 5 ) = 4 , o r d 3 ( 11 ) = 5 ord_3(5)=4,ord_3(11)=5 ord3(5)=4,ord3(11)=5

阶的一些重要性质(以下默认阶存在,即 ( a , d ) = 1 (a,d)=1 (a,d)=1,默认数是正整数):
性质1:若 o r d d ( a ) = r , ord_d(a)=r, ordd(a)=r, a q ≡ 1 ( m o d d ) a^q\equiv1\pmod d aq1(modd)。则: r ∣ q r|q rq

证:若 r ∤ q r\nmid q rq,设 q = k r + l ( 0 < l < r ) q=kr+l(0<l<r) q=kr+l(0<l<r)。则 a k r + l ≡ ( a r ) k ∗ a l ≡ a l ≡ 1 ( m o d d ) a^{kr+l}\equiv{(a^r)}^k*a^l\equiv a^l\equiv1\pmod d akr+l(ar)kalal1(modd)
∵ l < r , a l ≡ 1 ( m o d d ) ∴ \because l<r,a^l\equiv1\pmod d\quad\therefore l<r,al1(modd) o r d d ( a ) = r ord_d(a)=r ordd(a)=r 矛盾。 ∴ r ∣ q \quad\therefore r|q rq

推论1 r ∣ φ ( d ) r|\varphi(d) rφ(d)

推论2:若 u ∣ d , o r d u ( a ) = v , u|d,ord_u(a)=v, ud,ordu(a)=v,则: v ∣ r v|r vr
证: ∵ a r ≡ 1 ( m o d d ) , r ∣ d \because a^r\equiv1\pmod d,r|d ar1(modd),rd ∴ a r ≡ 1 ( m o d u ) ∴ \quad\therefore a^r\equiv1\pmod u\quad\therefore ar1(modu)性质1得: v ∣ r v|r vr



性质2:若 ( a , m ) = 1 , ( a , n ) = 1 , ( n , m ) = 1 (a,m)=1,(a,n)=1,(n,m)=1 (a,m)=1(a,n)=1(n,m)=1,设 x = o r d n ( a ) , y = o r d m ( a ) , z = o r d n m ( a ) x=ord_n(a),y=ord_m(a),z=ord_{nm}(a) x=ordn(a),y=ordm(a),z=ordnm(a),则 z = l c m ( x , y ) z=lcm(x,y) z=lcm(x,y)
证: ∵ a z ≡ 1 ( m o d n m ) ∴ a z ≡ 1 ( m o d n ) , a z ≡ 1 ( m o d m ) \because a^z\equiv1\pmod {nm}\quad\therefore a^z\equiv1\pmod n,a^z\equiv1\pmod m az1(modnm)az1(modn),az1(modm)
性质1得: x ∣ z , y ∣ z x|z,y|z xz,yz ∴ l c m ( x , y ) ∣ z \quad\therefore lcm(x,y)|z lcm(x,y)z
∵ x ∣ l c m ( x , y ) , y ∣ l c m ( x , y ) ∴ a l c m ( x , y ) ≡ 1 ( m o d n ) , a l c m ( x , y ) ≡ 1 ( m o d m ) \because x|lcm(x,y),y|lcm(x,y)\quad\therefore a^{lcm(x,y)}\equiv1\pmod n,a^{lcm(x,y)}\equiv1\pmod m xlcm(x,y),ylcm(x,y)alcm(x,y)1(modn),alcm(x,y)1(modm)
∵ ( n , m ) = 1 ∴ \because (n,m)=1\quad\therefore (n,m)=1 由同余性质得: a l c m ( x , y ) ≡ 1 ( m o d n m ) a^{lcm(x,y)}\equiv1\pmod{nm} alcm(x,y)1(modnm)。由性质1得: z ∣ l c m ( x , y ) z|lcm(x,y) zlcm(x,y)
∴ z = l c m ( x , y ) \therefore z=lcm(x,y) z=lcm(x,y)

可见性质1很重要。

题目:

1.设 M n = 2 n − 1 M_n=2^n-1 Mn=2n1。证明:若 p ∤ q p\nmid q pq ( p p p 是素数),则 ( M p , M q ) = 1 (M_p,M_q)=1 (Mp,Mq)=1






证:若 ( M p , M q ) = d > 1 (M_p,M_q)=d>1 (Mp,Mq)=d>1。则 d ∣ M p , d ∣ M q d|M_p,d|M_q dMp,dMq。设 o r d d ( 2 ) = x ord_d(2)=x ordd(2)=x。由性质1得: x ∣ p , x ∣ q x|p,x|q xp,xq
∵ p \because p p 是素数。 ∴ x = 1 或 p \quad\therefore x=1或p x=1p
x = 1 x=1 x=1,则 2 ≡ 1 ( m o d d ) ⇒ d = 1 2\equiv1\pmod d\Rightarrow d=1 21(modd)d=1。矛盾。
x = p x=p x=p ∴ p ∣ q \therefore p|q pq。矛盾。
∴ ( M p , M q ) = 1 \therefore (M_p,M_q)=1 (Mp,Mq)=1



2.求 r = o r d 2 2000 ( 193 ) r=ord_{2^{2000}}(193) r=ord22000(193)






性质1推论得: r ∣ φ ( 2 2000 ) = 2 1999 r|\varphi(2^{2000})=2^{1999} rφ(22000)=21999。设 r = 2 k ( 0 < k ≤ 1999 ) r=2^k(0<k\leq1999) r=2k(0<k1999)
19 3 r − 1 ≡ 19 3 2 k − 1 ≡ ( 193 − 1 ) ∗ ∏ i = 1 k − 1 ( 19 3 2 i + 1 ) ≡ 0 ( m o d 2 2000 ) \large193^r-1\equiv193^{2^k}-1\equiv(193-1)*\prod\limits_{i=1}^{k-1}(193^{2^i}+1)\equiv0\pmod {2^{2000}} 193r11932k1(1931)i=1k1(1932i+1)0(mod22000)
∵ 2 6 ∥ 192 , 2 ∥ 19 3 2 i + 1 \because 2^6\parallel192,2\parallel193^{2^i}+1 26192,21932i+1
∴ v 2 ( 19 3 r − 1 ) = 6 + 2 n \therefore v_2(193^r-1)=6+2n v2(193r1)=6+2n
∵ 6 + k ≥ 2000 ∴ k m i n = 1994 ∴ r = 2 1994 \because 6+k\ge2000\quad\therefore k_{min}=1994\quad\therefore r=2^{1994} 6+k2000kmin=1994r=21994



3.求 o r d 1 0 n ( 3 ) ( n ≥ 4 ) ord_{10^n}(3)(n\ge4) ord10n(3)(n4)






性质2得: o r d 1 0 n ( 3 ) = l c m ( o r d 2 n ( 3 ) , o r d 5 n ( 3 ) ) ( n ≥ 4 ) ord_{10^n}(3)=lcm(ord_{2^n}(3),ord_{5^n}(3))(n\ge4) ord10n(3)=lcm(ord2n(3),ord5n(3))(n4)
r = o r d 2 n ( 3 ) ∣ 2 n − 1 r=ord_{2^n}(3)|2^{n-1} r=ord2n(3)2n1。若 r r r 是偶数,则 2 n ∣ 3 r − 1 ⇔ v 2 ( 3 r − 1 ) = n 2^n|3^r-1\Leftrightarrow v_2(3^r-1)=n 2n3r1v2(3r1)=n
L T E LTE LTE定理得: v 2 ( 3 r − 1 ) = v 2 ( r ) + v 2 ( 3 2 − 1 2 ) − 1 v_2(3^r-1)=v_2(r)+v_2(3^2-1^2)-1 v2(3r1)=v2(r)+v2(3212)1。故 r = 2 n − 2 r=2^{n-2} r=2n2,当 n ≥ 4 n\ge4 n4 r r r 是偶数,满足。
r r r 是奇数,则 r = 1 ⇒ n = 1 r=1\Rightarrow n=1 r=1n=1,矛盾。
u = o r d 5 n ( 3 ) ∣ 4 ∗ 5 n − 1 u=ord_{5^n}(3)|4*5^{n-1} u=ord5n(3)45n1。通过归纳容易证明: 3 5 x ≡ 3 1 ( m o d 5 ) , 3 2 ∗ 5 x ≡ 3 2 ( m o d 5 ) 3^{5^x}\equiv3^1\pmod5,3^{2*5^x}\equiv3^2\pmod5 35x31(mod5),325x32(mod5)
u = 4 ∗ 5 k ∣ 4 ∗ 5 n − 1 u=4*5^k|4*5^{n-1} u=45k45n1。由 L T E LTE LTE定理得: v 5 ( 3 4 ∗ 5 k − 1 ) = v 5 ( 5 k ) + v 5 ( 3 4 − 1 ) = k + 1 v_5(3^{4*5^k}-1)=v_5(5^k)+v_5(3^4-1)=k+1 v5(345k1)=v5(5k)+v5(341)=k+1。故 u = 4 ∗ 5 n − 1 u=4*5^{n-1} u=45n1
∴ o r d 1 0 n = l c m ( 2 n − 2 , 4 ∗ 5 n − 1 ) = 2 n − 2 ∗ 5 n − 1 \therefore ord_{10^n}=lcm(2^{n-2},4*5^{n-1})=2^{n-2}*5^{n-1} ord10n=lcm(2n2,45n1)=2n25n1
上述思路值得借鉴。



4.若奇素数 p p p,素数 q , r q,r q,r满足: p ∣ q r + 1 p|q^r+1 pqr+1。证明: 2 r ∣ p − 1 2r|p-1 2rp1 p ∣ q 2 − 1 p|q^2-1 pq21






证:设 d = o r d q ( p ) d=ord_q(p) d=ordq(p)。又 q 2 r ≡ 1 ( m o d p ) q^{2r}\equiv1\pmod p q2r1(modp),由性质1得: d ∣ 2 r d|2r d2r。又 q d ≡ 1 ( m o d p ) q^d\equiv1\pmod p qd1(modp)。由性质1得: d ∣ p − 1 d|p-1 dp1
显然, d = 1 , 2 , r , 2 r d=1,2,r,2r d=1,2,r,2r
d = 1 , 2 d=1,2 d=1,2时, q ≡ ± 1 ( m o d p ) ⇒ p ∣ q 2 − 1 q\equiv \pm1\pmod p\Rightarrow p|q^2-1 q±1(modp)pq21
d = r d=r d=r时, q d ≡ q r ≡ − 1 ( m o d p ) q^d\equiv q^r\equiv-1\pmod p qdqr1(modp)。矛盾。
d = 2 r d=2r d=2r时, d = 2 r ∣ p − 1 d=2r|p-1 d=2rp1
证毕。

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值