算法训练Day7| LeetCode454. 四数相加II(Map作哈希表);383.赎金信(数组作哈希表);15.三数之和(双指针);18.四数之和(双指针)

LeetCode454. 四数相加

链接: 

454. 四数相加 II - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/4sum-ii/

这道题目是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于题目18. 四数之和,题目15.三数之和,还是简单了不少!

如果本题想难度升级:就是给出一个数组(而不是四个数组),在这里找出四个元素相加等于0,答案中不可以包含重复的四元组,大家可以思考一下,后续的文章我也会讲到的。

本题解题步骤:

  1. 首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
  2. 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
  3. 定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
  4. 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
  5. 最后返回统计值 count 就可以了
class Solution(object):
    def fourSumCount(self, nums1, nums2, nums3, nums4):
        # 使用字典存储nums1和nums2中的元素及其和
        hashmap = dict()
        for n1 in nums1:
            for n2 in nums2:
                if n1 + n2 in hashmap:
                    hashmap[n1+n2] += 1
                else:
                    hashmap[n1+n2] = 1
        
        # 如果 -(n1+n2) 存在于nums3和nums4, 存入结果
        count = 0
        for n3 in nums3:
            for n4 in nums4:
                key = - n3 - n4
                if key in hashmap:
                    count += hashmap[key]
        return count
 

 key = -n3 - n4 已经是n1+n2+n3+n4 = 0 因为只要有一组 -(n3 + n4) = (n1 + n2) 存在于hashmap中,就一定这一组数字相加等于0. 

383. 赎金信

383. 赎金信 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/ransom-note/description/

哈希解法

因为题目说只有小写字母,那可以采用空间换取时间的哈希策略,用一个长度为26的数组来记录magazine里字母出现的次数。

然后再用ransomNote去验证这个数组是否包含了ransomNote所需要的所有字母。

依然是数组在哈希法中的应用。

一些同学可能想,用数组干啥,都用map完事了,其实在本题的情况下,使用map的空间消耗要比数组大一些的,因为map要维护红黑树或者哈希表,而且还要做哈希函数,是费时的!数据量大的话就能体现出来差别了。 所以数组更加简单直接有效!

class Solution:
    def canConstruct(self, ransomNote: str, magazine: str) -> bool:
        ransom_count = [0] * 26
        magazine_count = [0] * 26
        for c in ransomNote:
            ransom_count[ord(c) - ord('a')] += 1
        for c in magazine:
            magazine_count[ord(c) - ord('a')] += 1
        return all(ransom_count[i] <= magazine_count[i] for i in range(26))

 

使用 all() 函数,检查 ransom_count 中每个字母的数量是否都小于等于, 反括号在range(26) 后面,而不是在count[i] 后面

第15题. 三数之和

15. 三数之和 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/3sum/description/

哈希解法

两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。

把符合条件的三元组放进vector中,然后再去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。

去重的过程不好处理,有很多小细节,如果在面试中很难想到位。

时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。

大家可以尝试使用哈希法写一写,就知道其困难的程度了。

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        result = []
        nums.sort()
        
        for i in range(len(nums)):
            # 如果第一个元素已经大于0,不需要进一步检查
            if nums[i] > 0:
                return result
            
            # 跳过相同的元素以避免重复
            if i > 0 and nums[i] == nums[i - 1]:
                continue
                
            left = i + 1
            right = len(nums) - 1
            
            while right > left:
                sum_ = nums[i] + nums[left] + nums[right]
                
                if sum_ < 0:
                    left += 1
                elif sum_ > 0:
                    right -= 1
                else:
                    result.append([nums[i], nums[left], nums[right]])
                    
                    # 跳过相同的元素以避免重复
                    while right > left and nums[right] == nums[right - 1]:
                        right -= 1
                    while right > left and nums[left] == nums[left + 1]:
                        left += 1
                        
                    right -= 1
                    left += 1
                    
        return result

去重逻辑的思考

#a的去重

说到去重,其实主要考虑三个数的去重。 a, b ,c, 对应的就是 nums[i],nums[left],nums[right]

a 如果重复了怎么办,a是nums里遍历的元素,那么应该直接跳过去。

但这里有一个问题,是判断 nums[i] 与 nums[i + 1]是否相同,还是判断 nums[i] 与 nums[i-1] 是否相同。

有同学可能想,这不都一样吗。

其实不一样!

都是和 nums[i]进行比较,是比较它的前一个,还是比较它的后一个。

如果我们的写法是 这样:

if (nums[i] == nums[i + 1]) { // 去重操作
    continue;
}

那我们就把 三元组中出现重复元素的情况直接pass掉了。 例如{-1, -1 ,2} 这组数据,当遍历到第一个-1 的时候,判断 下一个也是-1,那这组数据就pass了。

我们要做的是 不能有重复的三元组,但三元组内的元素是可以重复的!

所以这里是有两个重复的维度。

那么应该这么写:

if (i > 0 && nums[i] == nums[i - 1]) {
    continue;
}

这么写就是当前使用 nums[i],我们判断前一位是不是一样的元素,在看 {-1, -1 ,2} 这组数据,当遍历到 第一个 -1 的时候,只要前一位没有-1,那么 {-1, -1 ,2} 这组数据一样可以收录到 结果集里。

这是一个非常细节的思考过程。

#b与c的去重

很多同学写本题的时候,去重的逻辑多加了 对right 和left 的去重:(代码中注释部分)

while (right > left) {
    if (nums[i] + nums[left] + nums[right] > 0) {
        right--;
        // 去重 right
        while (left < right && nums[right] == nums[right + 1]) right--;
    } else if (nums[i] + nums[left] + nums[right] < 0) {
        left++;
        // 去重 left
        while (left < right && nums[left] == nums[left - 1]) left++;
    } else {
    }
}

但细想一下,这种去重其实对提升程序运行效率是没有帮助的。

拿right去重为例,即使不加这个去重逻辑,依然根据 while (right > left) 和 if (nums[i] + nums[left] + nums[right] > 0) 去完成right-- 的操作。

多加了 while (left < right && nums[right] == nums[right + 1]) right--; 这一行代码,其实就是把 需要执行的逻辑提前执行了,但并没有减少 判断的逻辑。

最直白的思考过程,就是right还是一个数一个数的减下去的,所以在哪里减的都是一样的。

所以这种去重 是可以不加的。 仅仅是 把去重的逻辑提前了而已。

#第18题. 四数之和

18. 四数之和 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/4sum/description/

四数之和,和15.三数之和 (opens new window)是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 (opens new window)的基础上再套一层for循环。

但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1]target-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。

15.三数之和 (opens new window)的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。

四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。

那么一样的道理,五数之和、六数之和等等都采用这种解法。

对于15.三数之和 (opens new window)双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。

之前我们讲过哈希表的经典题目:454.四数相加II (opens new window),相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。

454.四数相加II (opens new window)是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!

我们来回顾一下,几道题目使用了双指针法。

双指针法将时间复杂度:O(n^2)的解法优化为 O(n)的解法。也就是降一个数量级,题目如下

class Solution:
    def fourSum(self, nums: List[int], target: int) -> List[List[int]]:
        nums.sort()
        n = len(nums)
        result = []
        for i in range(n):
            if nums[i] > target and nums[i] > 0 and target > 0:
                break
            if i>0 and nums[i] == nums[i-1]:
                continue
            for j in range(i+1,n):
                if nums[i] + nums[j] > target and target >0:
                    break
                if j > i+1 and nums[j] == nums[j-1]:
                    continue
                left, right = j+1,n-1
                while left < right:
                    s = nums[i] + nums[j] + nums[left] + nums[right]
                    if s ==target:
                        result.append([nums[i],nums[j],nums[left],nums[right]])
                        while left<right and nums[left] == nums[left+1]:
                            left += 1
                        while left<right and nums[right] ==nums[right-1]:
                            right -=1
                        left +=1
                        right -=1
                    elif s < target:
                        left += 1
                    else:
                        right -= 1
        return result

代码好长啊。。看的都费劲,根据文章一点点啃下来,写估计是得靠二刷好好看看了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值