离散数学2

集合

1.集合的表示

整数集合Z 正整数集合N

列元素法

a61edfb1146843a1934afce31a1e85ab.png

谓词表示法

d1c0e7b70c044b9c8c346f2ed289f980.png

集合的元素都是集合

集合的元素是无序的

集合的元素与集合之间是属于关系

ed1bcde2a6a54b848d2121caf9d6027b.png

任何集合A都有 A不属于A

2.集合间关系

A B为两个集合 其中B中每个元素都是A中的元素 则B是A的子集,称B被A包含 也称A包含B

366e088faca74686bfe415877f8d6763.png

A B相等,即 2b660f7113af4d6ab1fb7d7f93625b47.png记作A=B9321f22850354c68a10f7a897092d99a.png

B属于但不等于A 则为真子集

空集里面无元素74b0e313b7e74efc93fc27e2927fe02f.png

空集是一切集合的子集  空集是唯一的

幂集

含有n个元素的集合简称n元集 它的含有m(m≤n)个元素的子集叫m元子集

0元子集为空集 一元子集也叫单元集

35fa4a7e97c44ab49188e76459d16690.png

定义:A为集合,把A的全部子集构成的集合叫A的幂集 记作P(A) 或 eq?2%5E%7BA%7D

31b1acea4cc9462a9eef2242bf78cbbf.png

在一个具体的问题中,如果所涉及的集合都是某个集合的子集,则称此集合为全集 全集具有相对性 同一个问题也可以有不同的全集

baecae5b23894cf894126ecf28e7f0b2.png

3.集合的运算

基本运算有并 交 对补 对称差

cea5a1e78ce84d86bced221c76716e93.png

A-B为B对A的相对补集          若两个集合交集为空集 则这两个集合不相交

对称差:A⊕B=B⊕A=(A-B)∪(B-A)

A⊕B=(A∪B)-(A∩B)

注意:A⊕A≠A

给定全集E以后,A包含于E,A的绝对补集~A

~A=E-A={x|x∈E∩x∉A}

广义并:A为集合,A的元素的元素构成的集合为A的广义并 记作∪A

01ef1ce3439e4703a92c4a6071070a0f.png

广义交:A为非空集合,A的所有元素的公共元素构成的集合 记作∩A

9fbf0e8d67c2496ea855795b2f07cb9d.png

空集只有广义并没有广义交

一类运算:广义并 广义交 幂集 绝对补运算

二类运算:并 交 相对补 对称差

一类运算优先 一类运算从右向左算 二类运算由括号决定先后顺序

A={{a},{a,b}}

86f31c4126c74b06a21804e75391c463.png画图解决

4.集合恒等式

幂等律 A∩A=A,A∪A=A

结合律 (A∩B)∩C=A∩(B∩C)

交换律 A∪B=B∪A

分配律 A∪(B∩C)=(A∪B)∩(A∪C)           A∩(B∪C)=(A∩B)∪(A∩C)

同一律 A∪Ø=A  A∩E=A

零律 A∪E=E A∩Ø=Ø

排中律 A∪~A=E

矛盾律 A∩~A=Ø

吸收律 A∪(A∩B)=A      A∩(A∪B)=A

德摩根律 A-(B∪C)=(A-B)∩(A-C)          ~(B∪C)=~B∩~C        ~Ø=E      ~E=Ø

双重否定律 ~(~A)=A

常用证明技巧:

A-B⊆A    A-B=A∩~B(把相对补转成交运算)      ∩~ = -

(A-B)∪B=A∪B

81a8632cfb30414b966b84b71e839dcb.png

二元关系

1.有序对和笛卡尔积

有序对:两个元素x,y(x可以=y)按一定顺序排列成的二元组叫做有序对或序偶 记作<x,y> x为第一元素,y为第二元素

有序对的元素是有序的,集合中的元素是无序的

性质:x≠y时,<x,y>不等于<y,x>

<x,y>=<u,v>充分必要条件x=u,y=v

笛卡尔积:A,B为集合,用A中元素为第一元素,B中元素为第二元素构成有序对,所有这样的有序对组成的集合叫作A和B的笛卡尔积 记作A×B  符号化7fa2e38eaece4572b3ff287abe6317d8.png

性质:A×Ø=Ø  Ø×A=Ø

一般不满足交换律和结合律

对并和交满足分配律:

A×(B∪C)=(A×B)∪(A×C)

A×(B∩C)=(A×B)∩(A×C)

A⊆C ∧ B⊆D ⇒ A×B⊆C×D

2.二元关系

若一个集合满足以下条件之一:

 集合非空,它的元素都是有序对

 集合是空集

则称该集合为一个二元关系 记作R      <x,y>∈R 记作xRy

设A,B为集合,A×B的任何子集所定义的二元关系称作从A到B的二元关系,特别当A=B时称作A上的二元关系

如A={0,1} B={1,2,3}

R1={<0,2>}   R2=A×B  R3=Ø,R4={<0,1>}等都是从A到B的二元关系,R3与R4同时也是A上的二元关系

先找A×B={<0,1>,<0,2>,<0,3>,<1,1>,<1,2>,<1,3>}

对任何集合A,空集Ø是A×A的子集 叫A上的空关系

全域关系E 恒等关系I

4d56e2c1e84f49f68519ff30bd7b9039.png

例如A={1,2}      EA={<1,1>,<1,2>,<2,1>,<2,2>}    IA={<1,1>,<2,2>}

8c78301fc42042c3a4f02fc1d3414180.png

3.关系表示法

关系矩阵

ec891587b35f47c1954a5528eca1299e.png

关系图

31dd67550b2a46808daf0fc135605f80.png

4.关系运算

1.定义域、值域、域、逆关系

   设R是二元关系

R中所有的有序对的第一元素构成的集合称为R的定义域 记作domRca2148d810ef4dc5b0bee00ee8fb9d75.png

R中所有的有序对的第二元素构成的集合称为R的值域  记作ranR6c7b5dafc0a84fd7af5a752cf5ad9607.png

R的域记作fldR    fldR = domR∪ranR

R的逆关系 记作eq?R%5E%7B-1%7D={<x,y>|<y,x>∈R}

例:R={<1,2>,<1,3>,<2,4>,<4,3>}

domR={1,2,4}     ranR={2,3,4}   fldR={1,2,3,4}  eq?R%5E%7B-1%7D={<2,1>,<3,1>,<4,2>,<3,4>}

f6323c64e97e40e185e2419959d23e5d.png

例:F={<3,3>,<6,2>},G={<2,3>} FoG={<6,3>}

2.限制、象、关系运算的优先顺序

11b5477594634245a5374b23cc498249.png

例:R={<1,2>,<1,3>,<2,2>,<2,4>,<3,2>}

R↾{1}={<1,2>,<1,3>}

R↾Ø=Ø

R↾{2,3}={<2,2>,<2,4>,<3,2>}

R[{1}]={2,3}    R[Ø]=Ø    R[{3}]={2}

关系运算优先于集合运算 逆运算优先于其它运算

3.运算的性质

eq?%28F%5E%7B-1%7D%29%5E%7B-1%7D=eq?F

domeq?F%5E%7B-1%7D=raneq?F     raneq?F%5E%7B-1%7D=domeq?F

40fffbd268d1492c8aa88c4bf406ba85.png

5f12037208db4506a7e9e34c06e06a6c.png

443ac063699647219e2067d5478dbbad.png与限制一样

4.关系的幂

4e1c50d65d5f4da8a47e5c776538762e.png

9cbf4e4b15e14f349c9c380ae969982f.png

9af82939abd54d58af2c2de7101c9d35.png0c233d4e154d4e24b036f9adc1e1b229.pngcf81065a27c84eb39bf704d093c0ef45.png

5.关系的性质

自反性、反自反性、对称性、反对称性、传递性

8d22442ad8df4056807b01bece6de68c.png64ff20bff85148d6a30c44ee107e1d03.png

bd1560c1be174c0a801126afa0db5564.png

e267601ace0140698a59ddf5df89499b.png

图论

1.定义

图是一个三元组<V(G),E(G),pG>,其中V(G)是一个非空的结点集合,E(G)是边集合,pG是从边集合E到结点无序偶(有序偶)集合上的函数。

c1f482811c0a4cfd91c05e0b34d96610.png

若|V(G)|=n,则称G为n阶图

若|V(G)|与|E(G)|均为有限数,则称G为有限图

若边集E(G)=0,则称G为零图,此时,又若G为1阶图,则称为平凡图(只含有一个顶点的图)。

一个顶点不与任何边相连 则为孤立点

始终点为一个 则为

连接着同一个顶点的很多边 称为平行边

含平行边为多重图

无环无平行边为简单图

2.点的度数

点相关边的个数为度 记作deg(v)

 在有向图中 顶点被指向的叫入度 记作d-(v) 指出去的叫出度 记作d+(v)

度数=出度+入度

最大(出、入)度 最小度

最大:Δ  最小:δ

度数为1的顶点叫悬挂点 与该顶点有关的边叫悬挂边

偶度顶点 奇度顶点

3.握手定理

1.无向图中

34401460ffa5417e85b1cbdcbda154ec.png

各顶点度数和等于边数的二倍 2m=2|E| 每条边包括环都有两个端点 即提供两度(2m)

G为任意n阶无向简单图 则eq?%5CDelta(G)≤n-1

2.有向图中

出度=入度=|E|

各顶点度数和等于边数的二倍

推论:任意图中,奇度顶点有偶数个

4.完全图

每对结点都有边相连 有n个结点的无向完全图记作Kn

在Kn中对每条边任意确定一个方向 成为有向完全图

n个结点的无向完全图边的数量为a4025d9109b445909d57fc1352f9d5f3.png

5.子图和补图

补图:使一个图成为完全图的图 边少了

0c25f4cc7ca94e92afb6b0aa6afb2bdb.png

子图:点集和边集都是一个集的子集 点和边都少了

生成子图:点没有少

拿掉点 边可能会变化

6.图的同构(等价关系)

aa6045382fe44422a07d072a8d678dcc.png

结点和边分别存在一一对应并保持关联关系(充要条件)

同构的必要条件:结点数相同 边数相等 度数相同的结点数相等

一个自互补图顶点数目为4k或4k+1个 k为正整数

7.路与回路

交替序列v0e1v1e2......envn称为联结v0到vn的路 v0:起点 vn:终点 n:路的长度

当v0=vn时,为回路 

若路中所有的边均不相同 称为

若路中所有结点均不相同 称为通路

若除v0=vn外 所有结点均不同 称为圈

n阶图中 如果vj到vk存在一条路 则一定存在一条不多于n-1条边的路

推论:.....必存在一条不多于n-1条边的通路

8.连通图与连通分支

无向图中 两结点之间存在一条路 称两结点连通

自反,对称,传递

cdf251f72d9446298cdfb15432b9d8da.png

连通图:在无向图或平凡图中,任意两点都是连通的

把无向图中相互连通的点构成的子图称为连通分支

连通分支数W(G)

图的连通程度:

W(G)=1 为连通图、完全图   W(G)>1 非连通图

W(G)=n 零图

bdb958afbc9244b397bfe3aecbd39628.png

G1为连通图 W(G)=1       G2为非连通图 W(G)=4

9.割集、连通度

无向图G=<V,E>中,只有把V1全部删掉后才不连通,少删任一V1包含的顶点后原图都连通。称V1是G的一个点割集

边割集同理 割边也叫

割点的充要条件:存在两个结点u、w,使得结点u和w的每条路都通过v

020e4f732f6a4288bf2e34ac668e07ae.png

删除V1 V2 V4其中的一个 仍连通 不是点割集  {v2,v4} {v3} {v5}都是点割集,v3、v5都是割点

注意:v1和v3不能构成点割集

无向连通图中,0efbe8561fa54db19a281941aa97593d.png

为G的点连通度

连通度:产生一个不连通图需要删去点的最少数目

48fc45b72a144258a64ea88f4fdabe07.png边连通度

注:非连通图的点(边)连通度为0 完全图Kn的点(边)连通度为n-1

存在割点(边)的连通图点(边)连通度为1

fead0c96112e41deaaf7bbf44e9f1de7.png5437b2e0768c46d9ad27c31feaa799ff.png

无向图G:k(G)≤λ(G)≤δ(G)

10.有向图连通

有向图D=<V,E>中结点u到v有一条路,称从u可达v。

u到v的路中最短的一条叫距离

任何一对结点之间至少由一个结点到另一个结点是可达的 为单向连通  相互可达 为强连通 

若略去边方向看成无向图后,图连通,为弱连通

d3e3e5a637404e619866d4507799090a.png

强连通与单向连通的判定定理

D是强连通当且仅当D中存在经过每个顶点至少一次的回路

D是单向连通图当且仅当D中存在经过每个顶点至少一次的通路

11.图的矩阵表示

邻接矩阵

设G<V,E>是一个简单图,它有n个结点,n阶方阵A(G)=(aij)称为G的邻接矩阵

可达矩阵

关联矩阵

12.欧拉图

给定无孤立点的图G,若存在一条路,经过所有边一次且仅一次,称为欧拉路;若存在经过图中所有边一次且仅一次的回路称为欧拉回路

  • 具有欧拉回路的图为欧拉图
  • 有欧拉路无欧拉回路的图为半欧拉图

给定有向图D,通过图中每边一次且仅一次的一条单向路(回路),称作单向欧拉路(欧拉回路)

  • 无孤立点的无向图G具有一条欧拉路 当且仅当 G是连通的且有0或2个奇度结点
  • 有向图G具有一条单向欧拉路,当且仅当它连通,且除两个顶点外,每个结点的出入度相等,这两个结点中,一个结点的入度比出度大1,另一个小1
  • 有向图G具有一条单向欧拉回路,当且仅当它是连通的,且每个结点入度等于出度

两个以上奇度顶点 图不能一笔画出

13.哈密顿图

给定无孤立点的图G,若存在一条路,经过所有结点一次且仅一次,称为哈密顿路;若存在经过图中所有边一次且仅一次的回路称为哈密顿回路

  • 具有哈密顿回路的图为哈密顿图
  • 有哈密顿路无哈密顿回路的图为半哈密顿图

若G中有割点或桥,则G不是哈密顿图

判定

VjVi为任意不相邻顶点

  • 8
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值