参考文章:DeepSeek-R1-Distill-Qwen-7B
1. 权重量化(Weight Quantization)
- 基本概念:
权重量化是指把深度学习模型中的参数(通常以32位浮点数表示)转换成低位数的数据类型(例如8位整数)。 - 主要用途:
- 减少模型大小: 低精度的数据表示可以显著减小模型的存储空间。
- 加速推理速度: 在推理过程中,低精度计算通常比高精度计算快,同时也减少了内存带宽的压力。
- 降低能耗: 较小的模型和更快的计算有助于降低能耗,适用于边缘设备或大规模部署。
2. W8A8量化
- 基本概念:
“W8A8”中的“W”代表权重(Weights),“A”代表激活(Activations),而“8”则代表使用8位来表示。 - 主要用途:
- 双向量化: 同时将模型的权重和激活都量化为8位,从而在推理时进一步减少计算和内存开销。
- 专用环境: 文中提到这种量化方式需要在Atlas 800I A2服务器上运行,并且需要使用专门的工具(msmodelslim)来实现。
3. 稀疏量化
- 基本概念:
稀疏量化是在量化的基础上,通过剪枝(去掉那些贡献很小或几乎为零的权重)形成“稀疏”的矩阵结构,即大部分权重为零。 - 主要用途:
- 进一步压缩模型: 通过将不重要的权重置零,可以使模型变得更加紧凑。
- 加速推理: 稀疏矩阵在专用硬件上能够利用零值跳过不必要的计算,从而提升推理效率。
- 专用环境: 文中指出稀疏量化只支持在Atlas 300I DUO推理卡上使用,并需要经过两个步骤:首先量化(得到W8A8S量化权重),再进行权重切分及压缩。
总结
- 为什么要做量化?
在实际应用中,尤其是在部署到资源有限的环境(如移动设备、边缘计算设备或特定的服务器硬件)时,模型的大小和计算速度至关重要。量化技术能够在保证模型性能基本不变的情况下,大幅度降低内存占用和计算资源的需求。
- W8A8量化 vs 稀疏量化:
- W8A8量化 主要是将所有的权重和激活数据都用8位表示,是一种标准的量化方式。
- 稀疏量化 除了低位数表示外,还通过剪枝使得很多权重变为0,从而进一步压缩模型,并能在某些硬件上获得更快的推理速度。
ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ
ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ ᅟᅠ