LLM训推适配-[昇腾910B]-大模型量化推理-qwen2-72B

LLM训推适配-[昇腾910B]-大模型量化推理

推理框架MindIE
目前支持w8a8/w8a16/w8a16三种量化方式

0.环境介绍

软件 版本
驱动 24.1.rc1
cann 8.0.T37
Ascend-mindie MindIE 1.0.T61.B010
mindie-rt 1.0.T61.B010
mindie-torch 1.0.T61.B010
mindie-service 1.0.T61.B010
mindie-llm 1.0.T61.B010

自建镜像或者使用ascendhub发布的镜像

1.qwen2-72B-Chat w8a16量化


#1. 启动容器
docker run --rm  -it -u root --name=mindie_t61 --net=host --privileged=true -w /home --device=/dev/davinci_manager --device=/dev/devmm_svm --device=/dev/hisi_hdc 
<think>好的,我现在需要回答用户关于在资源受限环境下对Qwen2-VL-72B进行模型量化的具体方法的问题。首先,我需要了解用户的需求,他们可能是在资源有限的情况下希望部署或运行这个大型模型,量化是减小模型大小和计算需求的有效方法。 首先,我应该回顾一下模型量化的基本概念。量化通常指的是将模型中的浮点数参数转换为低位宽的表示,比如从32位浮点数(FP32)转换为8位整数(INT8),从而减少模型的内存占用和计算资源消耗。这对于资源受限的环境尤为重要。 接下来,我需要考虑Qwen2-VL-72B这个模型的具体情况。它是一个72B参数的大模型,属于非常大的模型,常规的量化方法可能需要调整以适应其规模。用户提到的资源受限环境可能包括内存不足、显存限制、计算能力较弱等情况,所以量化方法需要在这些限制下有效。 根据用户提供的引用,特别是引用[2]中提到的AWQ量化方法,这可能是一个可行的方案。AWQ(Activation-aware Weight Quantization)是一种自动化的量化技术,能够保持模型性能的同时减少模型大小。我需要确认AWQ是否适用于Qwen2-VL-72B,或者是否有其他荐的量化方法。 另外,用户提到了vLLM的升级,可能涉及到推理加速的优化。vLLM是一个高效的推理框架,支持大模型的部署,结合量化可以进一步提升性能。但需要检查vLLM是否支持Qwen2-VL-72B的量化版本,或者是否需要额外的配置。 接下来,具体的步骤可能包括: 1. 安装必要的工具,如autoawq库,如引用[2]中提到的。 2. 下载预练模型,可能需要从ModelScope获取Qwen2-VL-72B的基础模型。 3. 应用量化方法,如AWQ,进行权重量化。 4. 验证量化后的模型性能,确保精度损失在可接受范围内。 5. 在资源受限环境下部署量化后的模型,可能结合vLLM进行推理加速。 需要注意的是,大模型量化过程中可能会遇到显存不足的问题,尤其是在资源受限的环境中。可能需要采用分层量化或分阶段处理,逐步应用量化以避免内存溢出。此外,量化后的模型可能需要进行测试和微调,以确保其在实际应用中的效果。 用户还可能关心量化后的模型在特定任务上的表现,比如视觉语言任务,Qwen2-VL-72B可能用于多模态任务,因此量化过程中需要特别注意保留多模态特征的能力。可能需要调整量化策略,针对不同层的参数采用不同的量化位宽,或者使用混合精度量化。 此外,资源受限环境下的部署可能涉及模型分割、蒸馏等其他技术,但用户主要询问量化方法,所以应集中在量化步骤上。需要确保提供的步骤详细且可行,同时考虑到可能遇到的问题,如安装依赖失败、显存不足等,并提供相应的解决建议,如调整批量大小、使用内存优化技术等。 总结来说,回答应包括以下几个部分: - 量化方法选择(如AWQ) - 具体实施步骤(安装工具、下载模型、应用量化- 资源受限环境的优化策略(分层量化、调整配置) - 性能验证和测试 - 可能遇到的问题及解决方法 最后,需要引用提供的参考资料,特别是关于autoawq和vLLM的部分,确保回答的可靠性。同时,生成的相关问题应围绕量化方法、性能影响、优化策略和应用场景展开,帮助用户进一步探索该主题。</think>在资源受限环境下对Qwen2-VL-72B进行模型量化,可采用以下方法: ### 1. **量化方法选择** 荐使用**AWQ(Activation-aware Weight Quantization)**进行权重量化,该方法通过自动化搜索最优量化比例,在保持模型精度的同时将权重压缩至4-bit或8-bit[^2]。对于72B参数的巨型模型,AWQ能有效降低显存占用至原模型的20%-30%,特别适合GPU显存不足的场景。 ### 2. **具体实施步骤** #### (1) 环境准备 ```bash # 安装量化工具包 pip install autoawq transformers ``` 若遇到CUDA版本冲突,可通过`--extra-index-url`指定兼容的PyTorch版本。 #### (2) 模型加载与配置 ```python from awq import AutoAWQForCausalLM quantizer = AutoAWQForCausalLM.from_pretrained("Qwen/Qwen2-VL-72B", device_map="auto") ``` 建议添加`load_in_4bit=True`参数直接启用4-bit加载。 #### (3) 量化参数优化 ```python quant_config = { "zero_point": True, # 激活零值压缩 "q_group_size": 128, # 分组量化粒度 "w_bit": 4, # 4-bit量化 "version": "GEMM" # 使用矩阵乘法优化版本 } quantizer.quantize(quant_config, export_path="qwen2-vl-72b-awq4") ``` 分组量化粒度$g$的选取需平衡精度和效率,建议通过$g=128$起步测试。 ### 3. **资源受限环境优化** - **显存优化**:启用`gradient_checkpointing`和`flash_attention_2`,可将练显存降低40%: ```python model = AutoModelForCausalLM.from_pretrained( "qwen2-vl-72b-awq4", use_cache=False, attn_implementation="flash_attention_2" ) ``` - **CPU卸载**:通过`accelerate`库实现显存-内存交换: ```bash accelerate launch --cpu_offload quant_inference.py ``` ### 4. **性能验证** 量化后需测试关键指标: $$ \text{精度损失} \Delta P = \frac{1}{N}\sum_{i=1}^N |P_{\text{orig}}^{(i)} - P_{\text{quant}}^{(i)}| $$ 建议在MMLU、C-Eval等基准测试中控制$\Delta P < 2\%$。 ### 5. **部署建议** - 使用vLLM加速推理: ```python from vllm import LLM llm = LLM("qwen2-vl-72b-awq4", quantization="awq", max_model_len=2048) ``` - 调整并行度参数`tensor_parallel_size=4`可适配多卡环境[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值