题意:王子和公主同时从1出发走到 n*n, 求他们两个路径的最长公共子序列;
思路:因为这题n有250,如果用LCS负责度为O(n^2),容易超时,于是我们选择它的优化版Lis算法来求最长公共子序列,这样我们的复杂度就降为O(n*logn)了。
Lis算法:
先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。
现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。
注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若A[t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有D[j] < A[t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[t]。最后,len即为所要求的最长上升子序列的长度。
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=250*250+10;
int n, p, q, a;
int prince[maxn], princess[maxn];
int arr[maxn];
int Lis(int n)
{
int len=0;
memset(arr, 0, sizeof(arr));
for(int i=1; i<=n; i++)
{
int l=1, r=len;
while(l<=r)
{
int mid=(l+r)>>1;
if(prince[i]>arr[mid])
l=mid+1;
else r=mid-1;
}
arr[l]=prince[i];
if(l>len)
len=l;
}
return len;
}
int main()
{
int t=0;
scanf("%d", &t);
int cas=1;
while(t--)
{
scanf("%d%d%d", &n, &p, &q);
memset(prince, 0, sizeof(prince));
memset(princess, 0, sizeof(princess));
p++, q++;
for(int i=1; i<=p; i++)
{
scanf("%d", &prince[i]);
}
for(int i=1; i<=q; i++)
{
scanf("%d", &a);
princess[a]=i;
}
for(int i=1; i<=p; i++)
{
prince[i]=princess[prince[i]];
}
printf("Case %d: %d\n", cas, Lis(p));
cas++;
}
return 0;
}