题目:
有F+1个人来分N个圆形派,每个人得到的必须是一整块派,而不是几块拼在一起,且面积要相同。求每个人最多能得到多大面积的派(不必是圆形)。
输入的第一行为数据组数T。每组数据的第一行为两个整数N和F ( 1 ≤ N , F ≤ 10 000 ) ;第二行为 N 个整数 ri(1≤ri≤10 000),即各个派的半径。
对于每组数据,输出每人得到的派的面积的最大值,精确到10-3。
思路
1、题目涉及精确到10-3,可以朝二分法的算法上想。
2、此题关键是二分的条件。假设取得值小了,可以多分出的饼的个数大于等于F+1,那么此时就需要把饼设置大一些来尝试。假的取的值大了,导致可以分出的饼的个数小于<F+1,那么就要把饼设置地小一些来尝试。
3、二分的结束条件就是当精确值达到10-3。
代码:
#include <cstdio>
#include <cmath>
double PI=acos(-1.0);
int n,f;
double R[10005];
double Find(double l,double r)
{
if (r - l <= 1e-4)
return r;
double mid = (l + r) / 2;
int sum = 0;
for (int i = 0; i < n; i++)
sum += R[i] / mid;
//如果sum>=f,说明饼太小了。
//如果sum<f,说明饼太大了,不够分。
if (sum >= f)
return Find(mid,r);
else
return Find(l,mid);
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
scanf("%d%d",&n,&f);
f = f + 1;
double sum = 0;
for (int i = 0; i < n; i++)
{
scanf("%lf",&R[i]);
R[i] = PI * R[i] * R[i];
sum += R[i];
}
double ans = Find(0,sum/f);
printf("%.4lf\n",ans);
}
return 0;
}