【考研数学】高等数学第三模块——积分学 | Part III 二重积分


引言

积分学前面两个部分是一元积分的相关内容,今天开始进入重积分的学习。其实如果能理解好一元积分的定义和特点,稍加练习后,直接接上重积分是很不错的,因为彼此之间都有很多相似之处。同样,之前的微分学,二元微分也应该直接放在一元微分后面,马上续上去,趁热打铁,增强概念的理解深入。


一、概念与基本性质

1.1 实际应用背景

我们可以先回想一下一元积分的背景是用来做什么的。在定积分定义介绍中,我提出了两个例子,一个是运动问题的路程计算,还有一个是曲边梯形面积的计算。这些都是属于一元不规则量的计算。二重积分,便是用来解决二元不规则量的计算。

(1)平面薄片的质量

设平面有限闭区域 D D D 的面密度为 ρ ( x , y ) \rho (x,y) ρ(x,y) ,求其质量 m m m

如果这个平面的密度是分布均匀的,那这个质量我们就很轻松可以算出来,为 ρ S \rho S ρS S S S 为该区域的面积。但是现在,密度分布是不均匀的,如何去精确计算出质量呢?

我们可以利用定积分那样的微元法思想。

在这里插入图片描述
首先,将区域 D D D 划分为无数个小区域,每一个小区域的面积为 Δ σ 2 , Δ σ 2 , … , Δ σ n ; \Delta \sigma_2,\Delta \sigma_2,\dots,\Delta \sigma_n; Δσ2,Δσ2,,Δσn;

接着,在每一个小区域可以任取一点 ( ξ i , η i ) ∈ Δ σ i (\xi_i,\eta_i)\in \Delta \sigma_i (ξi,ηi)Δσi ,于是每个小区域的质量就可以近似等于 m i ≈ ρ ( ξ i , η i ) Δ σ i m_i \approx \rho(\xi_i,\eta_i)\Delta\sigma_i miρ(ξi,ηi)Δσi ,那么整个平面区域 D D D 的总质量也可近似为: m ≈ ∑ i = 1 n ρ ( ξ i , η i ) Δ σ i m \approx \sum_{i=1}^n \rho(\xi_i,\eta_i)\Delta\sigma_i mi=1nρ(ξi,ηi)Δσi λ i \lambda_i λi 表示小区域 Δ σ i \Delta \sigma_i Δσi 的直径(即区域上两点之间的最大距离), λ = m a x ( λ i ) \lambda = max(\lambda_i) λ=max(λi) 。当每一个小区域的直径无限接近于 0 时,区域便划分得无穷细,我们便可以得到该区域的精确质量为: m = lim ⁡ λ → 0 ∑ i = 1 n ρ ( ξ i , η i ) Δ σ i m=\lim_{\lambda \to0} \sum_{i=1}^n \rho(\xi_i,\eta_i)\Delta\sigma_i m=λ0limi=1nρ(ξi,ηi)Δσi

(2)曲顶柱体的体积

我们可以类似上面同样的思想,进行微分,然后得到精确的体积。

1.2 二重积分的概念

同样可以将上面的实际问题,抽象成一个数学模型。设函数 f ( x , y ) f(x,y) f(x,y) 在平面有界闭区域上有界。

(a)将该区域划分为若干个小区域,每个小区域面积为 Δ σ 2 , Δ σ 2 , … , Δ σ n ; \Delta \sigma_2,\Delta \sigma_2,\dots,\Delta \sigma_n; Δσ2,Δσ2,,Δσn;
(b)在每一个小区域可以任取一点 ( ξ i , η i ) ∈ Δ σ i (\xi_i,\eta_i)\in \Delta \sigma_i (ξi,ηi)Δσi ,作和: ∑ i = 1 n f ( ξ i , η i ) Δ σ i \sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i i=1nf(ξi,ηi)Δσi λ i \lambda_i λi 表示小区域 Δ σ i \Delta \sigma_i Δσi 的直径(即区域上两点之间的最大距离), λ = m a x ( λ i ) \lambda = max(\lambda_i) λ=max(λi) 。若极限 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \lim_{\lambda \to0} \sum_{i=1}^n f(\xi_i,\eta_i)\Delta\sigma_i λ0limi=1nf(ξi,ηi)Δσi 存在,则称此极限为函数 f ( x , y ) f(x,y) f(x,y) 在区域 D D D 上的二重积分,记为 ∬ D f ( x , y ) d σ . \iint_D f(x,y)d\sigma. Df(x,y)dσ.

1,函数在该区域上满足连续条件时,才可积。
2,二重积分同样是与区域的划分方法无关,与点的选取方法无关。因此,若函数在区域 { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 (x,y)|0 \leq x \leq 1,0 \leq y \leq 1 (x,y)∣0x1,0y1} 可积时,可以像定积分那样进行等分和选取一些特殊的点,于是有: lim ⁡ n → ∞ 1 n 2 ∑ i = 1 n ∑ j = 1 n f ( i n , j n ) = ∬ D f ( x , y ) d x d y . \lim_{n\to\infty}\frac{1}{n^2}\sum_{i=1}^{n}\sum_{j=1}^nf(\frac{i}{n},\frac{j}{n})=\iint_Df(x,y)dxdy. nlimn21i=1nj=1nf(ni,nj)=Df(x,y)dxdy.

1.3 二重积分的性质

同样和定积分一样,有区域可加性,常数可以提出来,当被积函数为 1 时,表示区域的面积等等。这里说几个特殊的性质。

(一)对称性质

设区域 D D D 关于 y y y 轴对称,右侧区域设为 D 1 D_1 D1

当有 f ( − x , y ) = − f ( x , y ) f(-x,y)=-f(x,y) f(x,y)=f(x,y) 时,有 ∬ D f ( x , y ) d x d y = 0 ; \iint_Df(x,y)dxdy=0; Df(x,y)dxdy=0;
当有 f ( − x , y ) = f ( x , y ) f(-x,y)=f(x,y) f(x,y)=f(x,y) 时,有 ∬ D f ( x , y ) d x d y = 2 ∬ D 1 f ( x , y ) d x d y . \iint_Df(x,y)dxdy=2\iint_{D_1}f(x,y)dxdy. Df(x,y)dxdy=2D1f(x,y)dxdy.

有点像奇偶性那样,不过与 y y y 轴对称,实际上是对变量 x x x
同样,若关于 x x x 轴对称,有类似结论。

另外,若区域 D D D 关于 y = x y=x y=x 对称,则变量 x , y x,y x,y 可自由交换位置: ∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y \iint_Df(x,y)dxdy=\iint_Df(y,x)dxdy Df(x,y)dxdy=Df(y,x)dxdy 。在有些情况下,可以调换后与原积分进行合并,达到简化积分的作用。

(二)积分中值定理

二重积分同样也有积分中值定理,和一元的类似。

D D D 为平面的闭区域,其面积为 A A A ,函数 f ( x , y ) f(x,y) f(x,y) 在区域上连续,则存在 ( ξ , η ) ∈ D (\xi,\eta)\in D (ξ,η)D ,使得 f ( ξ , η ) A = ∬ D f ( x , y ) . f(\xi,\eta)A=\iint_Df(x,y). f(ξ,η)A=Df(x,y).


二、积分法

2.1 直角坐标法

二重积分的计算其实是变二重为二次,关键是找到两个变量的范围,我一般采用画箭头的方法。
在这里插入图片描述
如上图所示,往上一画箭头,我能判断出 x x x 的范围,是最后积分的。然后判断 y y y 在两个 φ ( x ) \varphi(x) φ(x) 之间,便可以写出二重积分 ∬ D f ( x , y ) d x d x = ∫ a b d x ∫ φ 1 φ 2 f ( x , y ) d y . \iint_Df(x,y)dxdx=\int_a^bdx\int_{\varphi1}^{\varphi 2}f(x,y)dy. Df(x,y)dxdx=abdxφ1φ2f(x,y)dy.

同样也可以画一个往右的箭头,先对 x x x 积分,最后对 y y y 积分。也正是因为有这两种方式,因此启发我们,当某一个积分无法计算出来时,可以改变下积分次序,再去试试求解。

举个例子吧。计算 ∬ D ( x + y ) d x d y \iint_D(x+y)dxdy D(x+y)dxdy ,其中 D D D x = y 2 x=y^2 x=y2 y = x − 2 y=x-2 y=x2 围成。
在这里插入图片描述
首先看一下积分区域,是不是有对称性,说不定可以进行简化。这个题目是没有。接着,我们看一下是用向上的箭头,还是向右的箭头。

显然,如果用向上的箭头的话,区域就要分两块表示,不太方便。
在这里插入图片描述

因此,我们选择用向右的箭头,也就是最后积分 y y y
在这里插入图片描述
于是有: I = ∫ − 1 2 d y ∫ y 2 y + 2 ( x + y ) d x = ∫ − 1 2 ( − 1 2 y 4 − y 3 + 3 2 y 2 + 4 y + 2 ) d y = 189 20 I=\int_{-1}^{2}dy\int_{y^2}^{y+2}(x+y)dx=\int_{-1}^{2}(-\frac{1}{2}y^4-y^3+\frac{3}{2}y^2+4y+2)dy=\frac{189}{20} I=12dyy2y+2(x+y)dx=12(21y4y3+23y2+4y+2)dy=20189

2.2 极坐标法

一般当出现 x 2 + y 2 x^2+y^2 x2+y2 时,采用极坐标比较方便。因为极坐标是对直角坐标采用了三角变换 x = r ⋅ c o s θ , y = r ⋅ s i n θ x=r\cdot cos\theta,y=r\cdot sin\theta x=rcosθ,y=rsinθ ,有 r 2 = x 2 + y 2 r^2=x^2+y^2 r2=x2+y2 。使用时,需要判断出 r r r θ \theta θ 的范围。另外注意最后要多加一个 r r r 在被积函数里头。

在这里插入图片描述
同样举个例子,计算 I = ∬ D x y d x d y I=\iint_Dxydxdy I=Dxydxdy ,其中区域 D D D 是由圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y ,直线 y = x y=x y=x 以及 y y y 轴围成。
在这里插入图片描述
该区域用极坐标表示为: π 4 ≤ θ ≤ π 2 , 0 ≤ r ≤ 2 s i n θ \frac{\pi}{4}\leq \theta \leq \frac{\pi}{2},0 \leq r \leq 2sin\theta 4πθ2π,0r2sinθ 。其中 θ \theta θ 的确定是用一条射线逆时针扫过积分区域。 r r r 的确定是用过原点的射线穿过积分区域,穿入时的线位下限,穿出为上限。本题穿入是原点处,穿出是圆对应的曲线 r 2 = 2 r s i n θ r^2=2rsin\theta r2=2rsinθ

于是有: I = ∫ π 4 π 2 d θ ∫ 0 2 s i n θ r 3 s i n θ c o s θ d r = 4 ∫ π 4 π 2 s i n 5 θ d ( s i n θ ) = 4 × 1 6 × ( 1 − 1 8 ) = 7 12 I=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}d\theta\int_0^{2sin\theta}r^3sin\theta cos\theta dr=4\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}sin^5\theta d(sin\theta)=4\times \frac{1}{6}\times (1-\frac{1}{8})=\frac{7}{12} I=4π2πdθ02sinθr3sinθcosθdr=44π2πsin5θd(sinθ)=4×61×(181)=127


三、二重积分的应用

二重积分同样也有几何和物理应用的。

3.1 几何应用

1. 平面区域面积

二重积分可以用来求一个平面区域的面积,当被积函数为 1 时,积分值就代表面积 A A A A = ∬ D 1 d x d y A=\iint_D1dxdy A=D1dxdy 2. 曲顶柱体的体积

曲顶柱体的体积也可以利用二重积分得到,被积函数取该曲顶柱体的 z z z 表达式即可,设为 Σ : z = f ( x , y ) ( z ≥ 0 ) \varSigma:z=f(x,y)(z\geq0) Σ:z=f(x,y)(z0) ,其中 ( x , y ) ∈ D (x,y)\in D (x,y)D ,则曲顶柱体的体积为: V = ∬ D f ( x , y ) d x d y V=\iint_Df(x,y)dxdy V=Df(x,y)dxdy 3. 空间曲面的面积

空间有限曲面 Σ : z = f ( x , y ) , ( x , y ) ∈ D \varSigma:z=f(x,y),(x,y)\in D Σ:z=f(x,y),(x,y)D ,其面积计算公式为: A = ∬ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y A=\iint_D\sqrt{1+\big(\frac{\partial z}{\partial x}\big)^2+\big(\frac{\partial z}{\partial y}\big)^2}dxdy A=D1+(xz)2+(yz)2 dxdy

3.2 物理应用

设平面薄片 D D D 的面密度为 ρ ( x , y ) \rho(x,y) ρ(x,y) ,则

1. 质心坐标

D D D 的质心坐标为 ( x ‾ , y ‾ ) (\overline{x},\overline{y}) (x,y) ,其中 x ‾ = ∬ D x ρ d x d y ∬ D ρ d x d y , y ‾ = ∬ D y ρ d x d y ∬ D ρ d x d y \overline{x}=\frac{\iint_Dx\rho dxdy}{\iint_D\rho dxdy},\overline{y}=\frac{\iint_Dy\rho dxdy}{\iint_D\rho dxdy} x=DρdxdyDxρdxdy,y=DρdxdyDyρdxdy

2. 转动惯量

转动惯量是对标物体平动中的质量 m = ∫ m d m m=\int_mdm m=mdm 的量,一般表达为 J = ∫ m r 2 d m J=\int_mr^2dm J=mr2dm 。其中 r r r 表示微元到转动轴的距离,于是:

(1) D D D x x x 轴的转动惯量为 I x : ∬ D y 2 ρ d x d y I_x:\iint_Dy^2\rho dxdy Ix:Dy2ρdxdy

(2) D D D y y y 轴的转动惯量为 I y : ∬ D x 2 ρ d x d y I_y:\iint_Dx^2\rho dxdy Iy:Dx2ρdxdy

(3) D D D 绕原点的转动惯量为 I o : ∬ D ( x 2 + y 2 ) ρ d x d y I_o:\iint_D(x^2+y^2)\rho dxdy Io:D(x2+y2)ρdxdy

(4)设 M ( x , y ) M(x,y) M(x,y) 为区域 D D D 上一点, l l l 为一条直线, M M M l l l 的距离为 d d d ,则 D D D l l l 的转动惯量为 I l : ∬ D d 2 ρ d x d y I_l:\iint_Dd^2\rho dxdy Il:Dd2ρdxdy

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值