Halcon亚像素边缘缺陷检测案例

该文介绍了如何运用Halcon进行金属区域的边缘检测,通过阈值分割和亚像素边缘提取获取边缘信息,再利用fit_rectangle2_contour_xld拟合最小外接矩形。之后计算轮廓点到矩形的距离,以此判断是否存在缺陷,如顶点附近的误检问题。文章还展示了如何屏蔽角落附近的像素点,并检查是否存在断胶、溢胶等缺陷。
摘要由CSDN通过智能技术生成

一、下面的案例是总结的Halcon边缘缺陷检测的一种情况。本案例是利用阈值分割获取金属区域,并利用boundary和edges_sub_pix获取到亚像素边缘。然后综合利用fit_rectangle2_contour_xld拟合出金属对应的放射矩形,最后利用dist_rectangle2_contour_points_xld计算金属轮廓上面的点到最小外接矩轮廓上面的点距离判断有无缺陷。触类旁通,依据此案例的原理可以推理应用在别的区域。例如胶路轨迹检测,仍然可以利用边缘XLD轮廓和边缘点距离判断胶路有无,断胶,溢胶,等等。
二、由于金属顶点角落附近打光比较暗,容易误检,所以需要屏蔽角点附近区域。案例计算金属轮廓上的点到最小外接矩的四个顶点距离,并获取最小值。后面判断缺陷时会屏蔽距离小于7的点,其实就是屏蔽了矩形顶点附近七个像素以内的所有像素点。屏蔽代码如下:
2.1 计算轮廓上所有点到最小外接矩4个顶点距离。
D1 := sqrt((Rows - RowC[0]) * (Rows - RowC[0]) + (Cols - ColC[0]) * (Cols - ColC[0]))
D2 := sqrt((Rows - RowC[1]) * (Rows - RowC[1]) + (Cols - ColC[1]) * (Cols - ColC[1]))
D3 := sqrt((Rows - RowC[2]) * (Rows - RowC[2]) + (Cols - ColC[2]) * (Cols - ColC[2]))
D4 := sqrt((Rows - RowC[3]) * (Rows - RowC[3]) + (Cols - ColC[3]) * (Cols - ColC[3]))
2.2 通过min2比较所有的数组,并返回最小值数组。
DistCorner := min2(min2(D1,D2),min2(D3,D4))
2.3 计算金属轮廓上面的点到最小外接矩轮廓上面的点距离
dist_rectangle2_contour_points_xld (RectangleEdge, 0, Row[I], Column[I], Phi[I], Length1[I], Length2[I], Dist)
2.4 通过if (DistCorner[J] > 7.0 and Dist[J] > 1.0),屏蔽矩形顶点附近七个像素以内的所有像素点,并且金属轮廓上面的点到最小外接矩轮廓上面的点距离大于1的判定NG。

  • RectangleOK := true
    
  • for J := 0 to |Dist| - 1 by 1
    
  •     if (DistCorner[J] > 7.0 and Dist[J] > 1.0)
    
  •         RectangleOK := false
    
  •         break
    
  •     endif
    
  • endfor
    
* This example program shows how fit_rectangle2_contour_xld can be used to
* detect manufacturing errors of punched holes in a metal part.  The errors
* show up as small protrusions of the metal into the hole.  They can be detected
* by fitting rectangles to the edges of the hole robustly (i.e., with outlier
* suppression) and the calculating the distances of the edges to the rectangle
* sides using dist_rectangle2_contour_points_xld.  Since the corners of the
* holes are slightly rounded, some extra processing must be performed to
* disregard the corners in the check for errors.
dev_update_off ()
read_image (Image, 'punched_holes')
get_image_size (Image, Width, Height)
dev_close_window ()
dev_open_window (0, 0, Width, Height, 'black', WindowHandle)
set_display_font (WindowHandle, 16, 'mono', 'true', 'false')
dev_display (Image)
* Since the metal part is backlit, the processing speed can be increased
* significantly by constructing a ROI for the subpixel-precise edge extraction
* that is as small as possible.  This can easily be achieved by thresholding and
* morphology.
fast_threshold (Image, Region, 128, 255, 10)
boundary (Region, Border, 'inner')
dilation_rectangle1 (Border, EdgeROI, 7, 7)
reduce_domain (Image, EdgeROI, ImageReduced)
* Perform the edge extraction.
edges_sub_pix (ImageReduced, Edges, 'canny', 1.7, 40, 120)
* Remove edge fragments that are too short.
select_shape_xld (Edges, RectangleEdges, 'contlength', 'and', 500, 100000)
* Fit rectangles to the holes' edges using the outlier suppression of Tukey.
fit_rectangle2_contour_xld (RectangleEdges, 'tukey', -1, 0, 0, 3, 2, Row, Column, Phi, Length1, Length2, PointOrder)
* Create rectangles with the fitted parameters for visualization purposes.
gen_rectangle2_contour_xld (Rectangles, Row, Column, Phi, Length1, Length2)
dev_set_color ('yellow')
dev_display (Rectangles)
* Check whether the holes are OK.
count_obj (RectangleEdges, Number)
for I := 0 to Number - 1 by 1
    select_obj (RectangleEdges, RectangleEdge, I + 1)
    * Get the contour's coordinates.
    get_contour_xld (RectangleEdge, Rows, Cols)
    * Create a rectangle with the appropriate rectangle parameters.
    gen_rectangle2_contour_xld (Rect, Row[I], Column[I], Phi[I], Length1[I], Length2[I])
    * Get the coordinates of the rectangle's corners.
    get_contour_xld (Rect, RowC, ColC)
    * Calculate the distances of all the contour points to the four corners of the
    * rectangle.
    D1 := sqrt((Rows - RowC[0]) * (Rows - RowC[0]) + (Cols - ColC[0]) * (Cols - ColC[0]))
    D2 := sqrt((Rows - RowC[1]) * (Rows - RowC[1]) + (Cols - ColC[1]) * (Cols - ColC[1]))
    D3 := sqrt((Rows - RowC[2]) * (Rows - RowC[2]) + (Cols - ColC[2]) * (Cols - ColC[2]))
    D4 := sqrt((Rows - RowC[3]) * (Rows - RowC[3]) + (Cols - ColC[3]) * (Cols - ColC[3]))
    * The distance of the contour points to the corners of the rectangle is given
    * by the minimum of the four distances.  This distance is used to exclude
    * contour points that are too close to the corners from the check for errors.
    DistCorner := min2(min2(D1,D2),min2(D3,D4))
    * Calculate the distances of the contour points of the rectangle.
    dist_rectangle2_contour_points_xld (RectangleEdge, 0, Row[I], Column[I], Phi[I], Length1[I], Length2[I], Dist)
    * Check whether the hole is OK by examining the distances of the contour
    * points to the rectangle.  A hole is OK if all points that lie more than seven
    * pixels from the corners have a distance of less than one pixel to the fitted
    * rectangle.  To do so, we could use the following code:
*     RectangleOK := true
*     for J := 0 to |Dist| - 1 by 1
*         if (DistCorner[J] > 7.0 and Dist[J] > 1.0)
*             RectangleOK := false
*             break
*         endif
*     endfor
    * A much faster way to do this in HDevelop is to generate a mask that
    * contains 0 for all points that should not be taken into account and 1
    * otherwise.  To do so, we subtract the minimum distance of 7.0 from the
    * distances to the corners and take the maximum of 0.0 and the resulting
    * values.  This sets all the distances that are too close to the corners to 0.
    * To set all other values to 1, we can simply take the sign of the values.
    Mask := sgn(max2(DistCorner - 7.0,0.0))
    * We can now multiply the distances to the rectangle with the mask and
    * check whether the maximum distance is smaller than the maximum allowed
    * distance of 1.0.
    RectangleOK := max(Dist * Mask) <= 1.0
    * Display whether the hole is OK.
    if (RectangleOK)
        dev_set_color ('green')
        get_string_extents (WindowHandle, 'OK', Ascent, Descent, Width, Height)
        set_tposition (WindowHandle, Row[I] - Height / 2, Column[I] - Width / 2)
        write_string (WindowHandle, 'OK')
    else
        dev_set_color ('red')
        get_string_extents (WindowHandle, 'Not OK', Ascent, Descent, Width, Height)
        set_tposition (WindowHandle, Row[I] - Height / 2, Column[I] - Width / 2)
        write_string (WindowHandle, 'Not OK')
    endif
endfor

原图
在这里插入图片描述
结果图
在这里插入图片描述

OpenCV和Halcon是两个不同的计算机视觉库,它们之间的函数和算法都有所不同。因此,OpenCV的代码无法直接实现Halcon亚像素边缘检测。但是,OpenCV也提供了一些常用的边缘检测函数,可以用来实现类似的功能。 以下是一个使用OpenCV实现亚像素边缘检测的示例代码: ```c++ #include <opencv2/opencv.hpp> using namespace cv; int main() { Mat image = imread("test.png", IMREAD_GRAYSCALE); Mat edges; // 使用Canny函数进行边缘检测 Canny(image, edges, 100, 200, 3); // 转换成浮点型图像 Mat floatImg; image.convertTo(floatImg, CV_32F); // 计算Sobel导数 Mat sobelX, sobelY; Sobel(floatImg, sobelX, CV_32F, 1, 0); Sobel(floatImg, sobelY, CV_32F, 0, 1); // 计算梯度大小和方向 Mat gradientMag, gradientDir; magnitude(sobelX, sobelY, gradientMag); phase(sobelX, sobelY, gradientDir, true); // 转换成8位无符号整型图像 Mat mag8; gradientMag.convertTo(mag8, CV_8U); // 显示结果 imshow("Original", image); imshow("Edges", edges); imshow("Gradient Magnitude", mag8); waitKey(0); return 0; } ``` 在这个示例代码中,我们首先使用Canny函数进行边缘检测,然后计算Sobel导数、梯度大小和方向,并将结果显示出来。这个过程中,我们使用了OpenCV提供的一些函数,包括Canny、Sobel、magnitude和phase等。需要注意的是,这些函数的具体参数和用法可能会因OpenCV版本的不同而有所差异,需要根据实际情况进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值