题意
给你N个闭区间,求最小的分组数,使得每组中的区间互不相交
分析
最开始想的是用取最多不相交区间的办法,不断地取出当前可以作为最多不相交区间的组,取后标记,再不断取,这样可以保证组数最少。但是这样做复杂度是
O(N2)
,而题中数据量是50000,不可取。
考虑另一种贪心思路:不断取当前可取的左端点最小的区间,如果可以加在当前右端最值最小的组的后面,则加入,否则新开一组放它。
那么实现的方法,首先不断取左端点最小的区间,显然将所有区间排序。而显然,不断寻找右端点的最小组,维护优先队列即可。
AC代码
//POJ 3190 Stall Reservations
//AC 2016-7-20 22:48:50
//Greedy
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;
#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define INF 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define bug cout<<"here"<<endl;
//#define debug
struct ox
{
int beg;
int endd;
int no;
bool operator< (const ox &rhs)const
{
if(beg==rhs.beg)
return endd<rhs.endd;
return beg<rhs.beg;
}
}cows[60000];
struct stall
{
int right;
int no;
bool operator <(const stall &rhs) const
{
return right>rhs.right;
}
stall(){}
stall(int r,int nn):right(r),no(nn){}
};
priority_queue<stall> stalls;
int in_stall[60000];
int main()
{
#ifdef debug
freopen("E:\\Documents\\code\\input.txt","r",stdin);
freopen("E:\\Documents\\code\\output.txt","w",stdout);
#endif
int N;
int a,b;
while(scanf("%d",&N)!=EOF)
{
while(stalls.size())
stalls.pop();
for(int i=0;i<N;++i)
{
scanf("%d %d",&cows[i].beg,&cows[i].endd);
cows[i].no=i;
}
sort(cows,cows+N);
int cnt=1;
for(int i=0;i<N;++i)
{
if(stalls.empty()||stalls.top().right>=cows[i].beg)
{
stalls.push(stall(cows[i].endd,cnt));
in_stall[cows[i].no]=cnt++;
}
else
{
stall cur=stalls.top();
stalls.pop();
cur.right=cows[i].endd;
stalls.push(cur);
in_stall[cows[i].no]=cur.no;
}
}
printf("%d\n",stalls.size());
for(int i=0;i<N;++i)
printf("%d\n",in_stall[i]);
}
return 0;
}