POJ 3280 Cheapest Palindrome 【区间DP】

14 篇文章 0 订阅

题目链接

题意

给你一串字符串,并给出添加以及删除(在任意位置)每种字符的花费,问把这个字符串变成回文串所需的最少花费


分析

经典的区间DP

状态


dp[i][j]Si,j1

习惯设成前闭后开区间

状态转移方程

如果当前子串最前面和最后面的字符本来就相同,当前的最小花费就等于里面的子串的最小花费。而若不相等,则考虑在前后加上或删去与两边相同的字符。

if(k<=1)
    dp[i][i+k]=0;
else if(org[i]==org[i+k-1])
    dp[i][i+k]=dp[i+1][i+k-1];
else
{
    dp[i][i+k]=min(dp[i][i+k],dp[i+1][i+k]+cost[org[i]-'a'][1]);
    dp[i][i+k]=min(dp[i][i+k],dp[i+1][i+k]+cost[org[i]-'a'][0]);
    dp[i][i+k]=min(dp[i][i+k],dp[i][i+k-1]+cost[org[i+k-1]-'a'][1]);
    dp[i][i+k]=min(dp[i][i+k],dp[i][i+k-1]+cost[org[i+k-1]-'a'][0]);
}

初始化、递推顺序、最终解

把dp全部初始化为正无穷,也可以顺便把空串和长度为1的情况初始化为0
从转移方程中可以看出,一个状态总是依赖于一些比它短的区间的状态,所以dp中循环的顺序应当按串的长度为依据来递推。
最终解就是dp[0][m]


AC代码

//POJ 3280 Cheapest Palindrome
//AC 2016-8-2 21:36:55
//DP
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;

#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define INF 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define bug cout<<"here"<<endl;
//#define debug

int N,M;
int cost[30][2];
int dp[3000][3000];
char org[3000];

int main()
{
    #ifdef debug
        freopen("E:\\Documents\\code\\input.txt","r",stdin);
        freopen("E:\\Documents\\code\\output.txt","w",stdout);
    #endif
    while(cin>>N>>M)
    {
        cin>>org;
        inf(cost);
        inf(dp);
        char c;int a,b;
        for(int i=0;i<N;++i)
        {
            cin>>c;
            cin>>cost[c-'a'][0]>>cost[c-'a'][1];
        }
        for(int k=0;k<=M;++k)
        {
            for(int i=0;i<=M-k;++i)
            {
                if(k<=1)
                    dp[i][i+k]=0;
                else if(org[i]==org[i+k-1])
                    dp[i][i+k]=dp[i+1][i+k-1];
                else
                {
                    dp[i][i+k]=min(dp[i][i+k],dp[i+1][i+k]+cost[org[i]-'a'][1]);
                    dp[i][i+k]=min(dp[i][i+k],dp[i+1][i+k]+cost[org[i]-'a'][0]);
                    dp[i][i+k]=min(dp[i][i+k],dp[i][i+k-1]+cost[org[i+k-1]-'a'][1]);
                    dp[i][i+k]=min(dp[i][i+k],dp[i][i+k-1]+cost[org[i+k-1]-'a'][0]);
                }
            }
        }
        cout<<dp[0][M]<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值