题目
题目链接:http://poj.org/problem?id=3280
题目来源:《挑战》练习题
简要题意:给定长 M 的字符串,给出删除和增加
N 种字母的代价,问转化为回文串的最小代价。数据范围: 1⩽M⩽2000;1⩽N⩽26;cost⩽104
题解
dp[l][r] 就是 [l,r] 区间化为回文串的最小代价。
对当前去匹配转移,首先 s[l]=s[r] 的话就是 dp[l+1][r−1] 。
因为有 dp[l+1][r−1]⩽dp[l+1][r],dp[l][r−1]
删去 sl 或者在 sr 后面加上 sl 都能完成匹配,代价 min(addsl,delsl)
同理删去 sr 或者在 sl 前面加上 sr 都能完成匹配,代价 min(addsr,delsr)
于是可以直接处理得到 vi=min(addsi,delsi)
得到方程 dp[l][r]=min(dp[l+1][r]+vl,dp[l][r−1]+vr)
实现
有了方程直接写就行了,递推会比dfs快点,在此给出两个版本的代码。
一般来说dfs写起来比较直观吧。
递推代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
LL powmod(LL a,LL b, LL MOD) {LL res=1;a%=MOD;for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res;}
// head
const int N = 2005;
const int M = 35;
char s[N];
int v[M];
int a[N];
int dp[N][N];
int main()
{
int n, m, add, del;
char ch;
scanf("%d%d%s", &n, &m, s);
for (int i = 0; i < n; i++) {
getchar();
scanf("%c%d%d", &ch, &add, &del);
v[ch-'a'] = min(add, del);
}
for (int i = 0; i < m; i++) {
a[i] = s[i]-'a';
}
int l, r;
for (int i = 1; i < m; i++) {
for (int j = 0; j+i < m; j++) {
l = j, r = i+j;
dp[l][r] = a[l]==a[r] ? dp[l+1][r-1] :
min(dp[l][r-1]+v[a[r]], dp[l+1][r]+v[a[l]]);
}
}
printf("%d\n", dp[0][m-1]);
return 0;
}
dfs代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <set>
#include <map>
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
LL powmod(LL a,LL b, LL MOD) {LL res=1;a%=MOD;for(;b;b>>=1){if(b&1)res=res*a%MOD;a=a*a%MOD;}return res;}
// head
const int N = 2005;
const int M = 35;
const int INF = 0x3f3f3f3f;
char s[N];
int v[M];
int a[N];
int dp[N][N];
int dfs(int l, int r) {
if (dp[l][r] != INF) return dp[l][r];
if (r-l <= 0) return dp[l][r] = 0;
if (a[l] == a[r]) return dp[l][r] = dfs(l+1, r-1);
dp[l][r] = min(dp[l][r], dfs(l+1, r) + v[a[l]]);
dp[l][r] = min(dp[l][r], dfs(l, r-1) + v[a[r]]);
return dp[l][r];
}
int main()
{
memset(dp, INF, sizeof dp);
memset(v, INF, sizeof v);
int n, m, add, del;
char ch;
scanf("%d%d%s", &n, &m, s);
for (int i = 0; i < n; i++) {
getchar();
scanf("%c%d%d", &ch, &add, &del);
v[ch-'a'] = min(add, del);
}
for (int i = 0; i < m; i++) {
a[i] = s[i]-'a';
}
printf("%d\n", dfs(0, m-1));
return 0;
}