POJ 3280 Cheapest Palindrome 区间dp

给出 n ≤ 2 e 3 n\leq2e3 n2e3的字符串,并且给出每个字符插入和删除需要的代价,现在要求最少的代价使得这个字符串是个回文串。
删除和插入其实是一回事情, f l , r f_{l,r} fl,r表示 [ l , r ] [l,r] [l,r]这段区间的最小值,如果 s i = s j s_{i}=s_{j} si=sj,那么 f l , r = f l + 1 , r − 1 f_{l,r}=f_{l+1,r-1} fl,r=fl+1,r1,否则 f i , j = m a x { f i + 1 , j + w i , f i , j − 1 + w j } f_{i,j}=max\{ f_{i+1,j}+w_{i},f_{i,j-1}+w_j\} fi,j=max{fi+1,j+wi,fi,j1+wj}。这里的 w i w_{i} wi表示对 i i i操作的最小代价,因为在一边插入和在另一边删除是一样的。
这个就当是凑数的吧。

#include<iostream>
#include<cstdio>
#include<cstring> 
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int M=2e3+7; 
int add[30],del[30];
char s[M],ch[3];
int f[M][M];
int main() {
	int n,m;
	scanf("%d%d",&n,&m);
	scanf("%s",s+1);
	for(int i=1;i<=n;i++) {
		scanf("%s",ch+1);
		int cur=ch[1]-'a'+1;
		scanf("%d%d",&add[cur],&del[cur]);
	} 
	memset(f,0x3f,sizeof(f));
	for(int i=1;i<=m;i++) f[i][i]=0;
	for(int i=1;i<=m;i++) f[i][i-1]=0;
	for(int len=2;len<=m;len++) {
		for(int l=1;l+len-1<=m;l++) {
			int r=l+len-1;
			if(s[l]==s[r]) f[l][r]=f[l+1][r-1];
			else f[l][r]=min(f[l+1][r]+min(add[s[l]-'a'+1],del[s[l]-'a'+1]),f[l][r-1]+min(add[s[r]-'a'+1],del[s[r]-'a'+1]));
		}
	}
	printf("%d\n",f[1][m]); 
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值