随机变量的函数 Functions of Random Variables

  • 6.1 介绍 Introduction 

  • 6.2 寻找随机变量的函数的概率分布 Finding the Probability Distribution of a Function of Random Variables

    • 三种基础方法(6.3, 6.4, 6.5)一个进阶方法(6.6)
  • 6.3 分布函数法 The Method of Distribution Functions

    • 例子:f(y) = \begin{cases} 2y, & 0 \leq y\leq1 \\ 0, & \text{elsewhere} \end{cases},求U=3Y-1的分布。

      • 1. & 2. 0 \leq y\leq 1 \rightarrow -1 \leq U \leq 2

      • 3.  F_U(u)=P(U \leq u)=P(3Y-1 \leq u)=P(Y \leq \frac{u+1}{3}) \\ P(Y \leq \frac{u+1}{3})=\int_{-\infty}^{(u+1)/3}f(y)dy = \int_{-\infty}^0 0dy+ \int_0^{1}2ydy + \int_{1}^{(u+1)/3}0dy

      • 所以F_U(u)= \begin{cases} \int_{-\infty}^0 0dy=0, & u<-1 \\ \int_{0}^{(u+1)/3}2ydy = (\frac{u+1}{3})^2, & -1 \leq u \leq 2 \\ \int_{-\infty}^0 0dy+ \int_0^{1}2ydy + \int_{1}^{(u+1)/3}0dy=1, & u>2\end{cases} \\

      • 4. f_U(u)=\frac{dF_U(u)}{du}= \begin{cases} \frac{2(u+1)}{9}, & -1\leq u <2 \\ 0, & \text{elsewhere}\end{cases}

    • 多元例子f(y_1, y_2)= \begin{cases} 3y_1, & 0 \leq y_2\leq y_1 \leq 1 \\ 0, & \text{elsewhere} \end{cases},求U=Y1-Y2的概率分布。

      • 1. 求F(U)就是求P(U<=u)

      • 2. 画出Y1-Y2=U的定义域,蓝色区域为y_1-y_2 \leq u的定义域,但是不好求,转而求底下小三角形,也就是y_1-y_2 \geq u的定义域。

      • 3. 之后直接代入就行

         

  • 6.4 变换法 The Method of Transformations

    • 单元例子f(y) = \begin{cases} 2y, & 0 \leq y\leq1 \\ 0, & \text{elsewhere} \end{cases},求U=3Y-1的分布。
      • U=3Y-1是y的一个increasing函数
      • 1. U=3Y-1 \rightarrow Y=\frac{U+1}{3} (y = h^{-1}(u))
      • 2. \frac{dh^{-1}}{du}=\frac{1}{3}
      • 3. f_U(u)=f_Y[h^{-1}(u)] |\frac{dh^{-1}}{du}|= \begin{cases} 2 \cdot \frac{u+1}{3} \cdot \frac{1}{3}=\frac{2(u+1)}{9}, & 0 \leq \frac{u+1}{3} \leq1 \rightarrow -1\leq u <2 \\ 0, & \text{elsewhere}\end{cases}
    • 多元例子f(y_1, y_2)= \begin{cases} e^{-(y_1+y_2)}, & 0 \leq y_1, 0 \leq y_2 \\ 0, & \text{elsewhere} \end{cases},求解U=Y_1+Y_2的density function。
      • 多元做法分两步:1. 求出U和Y1的联合密度函数;2. 积分后求出U的边缘密度函数
      • 1. 把Y1看作是一个大于零的固定值y1, 那么U=h(Y2)=y1+Y2,也就是说y_2=u-y_1=h^{-1}(u) \rightarrow \frac{dh^{-1}(u)}{du}=1,进一步地,g(y_1, u) = \begin{cases} f[y_1, h^{-1}(u)]|\frac{dh^{-1}}{du}|=e^{-(y_1+u-y_1)}, & 0 \leq y_1, 0 \leq u-y_1 \\ 0, & \text{elsewhere} \end{cases}
      • 2. 积分f(u) = \int_{-\infty}^{\infty} g(y_1, u)dy_1\\= \begin{cases}ue^{-u}, & 0 \leq u \\ 0, & \text{elsewhere} \end{cases}
    • 多元例子2f(y_1, y_2) = \begin{cases} 2(1-y_1), & 0 \leq y_1\leq1, 0 \leq y_2 \leq 1 \\ 0, & \text{elsewhere} \end{cases},求U=Y1Y2的密度函数。
      • 1. U=h(Y2)=y1Y2, y_2=u/y_1=h^{-1}(u) \rightarrow \frac{dh^{-1}(u)}{du}=1/y_1,进一步地g(y_1, u) = \begin{cases} f[y_1, h^{-1}(u)]|\frac{dh^{-1}}{du}|=2(1-y_1)\frac{1}{y_1}, & 0 \leq u \leq y_1 \leq1 \\ 0, & \text{elsewhere} \end{cases}
      • 2. 积分f(u) = \int_{0}^{1} g(y_1, u)dy_1\\= \begin{cases} 2(u-lnu-1), & 0 \leq u \leq 1 \\ 0, & \text{elsewhere} \end{cases}
  • 6.5 矩母函数法 The Method of Moment-Generating Functions

    • 定理

  • 6.6 Multivariable Transformations Using Jacobians (Optional)

  • 6.7 有序统计 Order Statistics

参考:Mathematical Statistics with Applications 5th

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值