连续分布总结

  • 连续随机变量的概率分布

    • Cumulative distribution function (或者简称distribution function)

      • Y是任意一个随机变量。Y的cdf被记为F(y),其定义是F(y) = P(Y\leq y), -\infty<y < \infty
      • Cdf的性质
        • F(-\infty)\equiv \lim_{y\rightarrow -\infty}F(y)=0
        • F(\infty)\equiv \lim_{y\rightarrow \infty}F(y)=1
        • F(y)是y的不递减(nondecreasing)函数:y_1<y_2 \rightarrow F(y_1)\leq F(y_2)
    • 如果一个随机变量Y的F(y)在-\infty<y<\infty的范围内是连续的,那么Y就是一个连续随机变量。
    • Probability density function

      • 定义:f(y)=\frac{dF(y)}{dy}=F'(y)
        • Cdf也可以被写成F(y)=\int_{-\infty}^{y}f(t)dt
      • Pdf的性质
        •  f(y)\geq 0, -\infty<y<\infty
        • \int_{-\infty}^{\infty}f(y)dy=1
    • 如果一个随机变量Y的pdf为f(y)并且a<b,那么Y落在区间[a, b]的概率是P(a \leq Y \leq b)=\int_a^bf(y)dy=F(b)-F(a)
      • 如果Y是连续随机变量并且a和b是满足a<b的常数,那么P(Y=a)=P(Y=b)=0。我们可以进一步得出P(a < Y < b)=P(a \leq Y <b)=P(a<Y\leq b)=P(a \leq Y \leq b)
  • 连续随机变量的期望

    • 期望的定义
      • E(y)=\int_{-\infty}^{\infty}yf(y)dy
    • 期望的性质
      • E[g(y)]=\int_{-\infty}^{\infty}g(y)f(y)dy
      • E(c)=c
      • E[cg(Y)]=cE[g(y)]
      • E[g_1(Y)+...+g_k(Y)]=E[g_1(Y)]+...+E[g_k(Y)]
      • V(Y)=\sigma^2=E[(Y-\mu)^2]=E(Y^2)-\mu^2  
  • 常见连续分布

  • 矩和矩母函数 Moment and Moment Generating Function

    • 关于原点的矩 kth moment about the origin:\mu'_k=E(Y^k), k = 1, 2, ...
    • 关于均值的矩 kth moment about the mean:\mu_k = E[(Y-\mu)^2], k = 1, 2, ...
    • 连续随机变量Y的矩母函数 moment generating function:m(t)=E(e^{tY})
    • g(Y)的矩母函数:E[e^{tg(y)}]=\int_{-\infty}^\infty e^{tg(y)}f(y)dy
    • 用矩母函数求任意关于原点的矩:\frac{d^km(t)}{dt^k}]_{t=0}=m^{(k)}(0)=\mu'_k

参考:

1. Mathematical Statistics with Applications 5th

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值