均匀分布 Uniform Distribution

文章讨论了公交车在特定时间段内到达的概率与时间间隔成正比的情况,形成了均匀分布。重点在于理解随机变量Y,即乘客在8点到达车站后等待公交车的时间长度,其遵循的均匀分布特性。此外,提到了均匀分布的期望和方差作为关键统计量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 均分分布的引入:

    • 假设一辆公共汽车总是在上午8:00到8:10之间到达某一站,而且公共汽车在任何给定的时间间隔内到达的概率只与该时间间隔的长度成正比。
      也就是说,公交车在8:00至8:02之间到达的可能性与8:06至8:08之间到达的可能性一样大:P(0 \leq Y \leq 2) = P(6 \leq Y \leq 8)
      让Y表示,如果一个人在8点整到达公交车站,他必须等待公交车的时间长度(分钟)。

  • 均匀分布的定义:

    • 随机变量Y在区间(\theta_1, \theta_2)内有连续均匀分布的充要条件是Y的f(y)为

f(y)= \begin{cases} \frac{1}{\theta_2-\theta_1},\quad &\theta_1\leq y\leq\theta_2 \\ 0,\quad &elsewhere \end{cases}

  • 均匀分布的期望:

    • \mu=E(y)=\int_{\theta_1}^{\theta_2}y(\frac{1}{\theta_2-\theta_1})dy=\frac{\theta_1+\theta_2}{2}
  • 均匀分布的方差:

    • \sigma^2=V(Y)=E(Y^2)-\mu^2=\int_{\theta_1}^{\theta_2}y^2(\frac{1}{\theta_2-\theta_1})dy-(\frac{\theta_1+\theta_2}{2})^2=\frac{(\theta_2-\theta_1)^2}{12}

参考:Mathematical Statistics with Applications 5th

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值