本文主要介绍复杂网络中节点相似度指标
基于局部信息的节点相似度指标
共同邻居
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ s_{xy}=|\Gamma(x)\cap\Gamma(y)| sxy=∣Γ(x)∩Γ(y)∣
Salton指标
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) × k ( y ) s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{\sqrt{k(x)×k(y)}} sxy=k(x)×k(y)∣Γ(x)∩Γ(y)∣
Jaccard指标
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ ∣ Γ ( x ) ∪ Γ ( y ) ∣ s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{|\Gamma(x)\cup\Gamma(y)|} sxy=∣Γ(x)∪Γ(y)∣∣Γ(x)∩Γ(y)∣
Sorenson指标
s x y = 2 ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) + k ( y ) s_{xy}=\frac{2|\Gamma(x)\cap\Gamma(y)|}{k(x)+k(y)} sxy=k(x)+k(y)2∣Γ(x)∩Γ(y)∣
大度节点有利指标(HPI)
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ m i n { k ( x ) , k ( y ) } s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{min\{k(x),k(y)\}} sxy=min{k(x),k(y)}∣Γ(x)∩Γ(y)∣
大度节点不利指标(HDI)
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ m a x { k ( x ) , k ( y ) } s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{max\{k(x),k(y)\}} sxy=max{k(x),k(y)}∣Γ(x)∩Γ(y)∣
优先链接指标
s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) × k ( y ) s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{k(x)×k(y)} sxy=k(x)×k(y)∣Γ(x)∩Γ(y)∣
Adamic-Adar指标(AA)
s x y = ∑ z ∈ Γ ( x ) ∩ Γ ( y ) 1 l o g k ( z ) s_{xy}=\sum_{z\in \Gamma(x)\cap\Gamma(y)}\frac{1}{logk(z)} sxy=z∈Γ(x)∩Γ(y)∑logk(z)1
资源分配指标(RA)
s x y = ∑ z ∈ Γ ( x ) ∩ Γ ( y ) 1 k ( z ) s_{xy}=\sum_{z\in \Gamma(x)\cap\Gamma(y)}\frac{1}{k(z)} sxy=z∈Γ(x)∩Γ(y)∑k(z)1
基于全局信息的节点相似度指标
局部路径指标
S = A 2 + α A 3 S=A^2+\alpha A^3 S=A2+αA3
其中 ( A n ) x y (A^n)_{xy} (An)xy给出了节点x和y之间长度为n的路径数。
Katz指标
s x y = ∑ i = 1 ∞ β l ( A l ) x y s_{xy}=\sum_{i=1}^\infty\beta^l(A^l)_{xy} sxy=i=1∑∞βl(Al)xy
其中 β \beta β为权重衰减因子。对应的相似矩阵如下:
S = β A + β 2 A 2 + ⋯ = ( I − β A ) − 1 − I S=\beta A+\beta^2A^2+\cdots=(I-\beta A)^{-1}-I S=βA+β2A2+⋯=(I−βA)−1−I
LHN-II指标
太复杂。。。不写
基于随机游走的相似度指标
平均通勤时间(Average Commute Time,ACT)
略。。。以后用到再写。
基于随机游走的余弦相似性(cos +)
略。。。以后用到再写。
重启的随机游走(Random Work with Restart,RWR)
略。。。以后用到再写。
SimRank(SimR)指标
基本假设是如果两节点所连接的节点相似,那么这两个节点就相似,其定义如下:
s x y S i m R = C ∑ z ∈ Γ ( x ) ∑ z , ∈ Γ ( y ) k x k y s_{xy}^{SimR}=C\frac{\sum_{z\in \Gamma(x)}\sum_{z^{,}\in \Gamma(y)}}{k_xk_y} sxySimR=Ckxky∑z∈Γ(x)∑z,∈Γ(y)
其中假定 s x x = 1 , C ∈ [ 0 , 1 ] s_{xx}=1,C\in[0,1] sxx=1,C∈[0,1]为相似性传递时的衰减参数。SimR指标可以用来描述两个分别从节点x和y出发的粒子多久会相遇。
局部随机游走指标
略。。。以后用到再写。
叠加的随机游走指标
略。。。以后用到再写。