社团检测之节点相似度指标

本文主要介绍复杂网络中节点相似度指标

基于局部信息的节点相似度指标

共同邻居

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ s_{xy}=|\Gamma(x)\cap\Gamma(y)| sxy=Γ(x)Γ(y)

Salton指标

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) × k ( y ) s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{\sqrt{k(x)×k(y)}} sxy=k(x)×k(y) Γ(x)Γ(y)

Jaccard指标

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ ∣ Γ ( x ) ∪ Γ ( y ) ∣ s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{|\Gamma(x)\cup\Gamma(y)|} sxy=Γ(x)Γ(y)Γ(x)Γ(y)

Sorenson指标

s x y = 2 ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) + k ( y ) s_{xy}=\frac{2|\Gamma(x)\cap\Gamma(y)|}{k(x)+k(y)} sxy=k(x)+k(y)2Γ(x)Γ(y)

大度节点有利指标(HPI)

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ m i n { k ( x ) , k ( y ) } s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{min\{k(x),k(y)\}} sxy=min{k(x),k(y)}Γ(x)Γ(y)

大度节点不利指标(HDI)

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ m a x { k ( x ) , k ( y ) } s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{max\{k(x),k(y)\}} sxy=max{k(x),k(y)}Γ(x)Γ(y)

优先链接指标

s x y = ∣ Γ ( x ) ∩ Γ ( y ) ∣ k ( x ) × k ( y ) s_{xy}=\frac{|\Gamma(x)\cap\Gamma(y)|}{k(x)×k(y)} sxy=k(x)×k(y)Γ(x)Γ(y)

Adamic-Adar指标(AA)

s x y = ∑ z ∈ Γ ( x ) ∩ Γ ( y ) 1 l o g k ( z ) s_{xy}=\sum_{z\in \Gamma(x)\cap\Gamma(y)}\frac{1}{logk(z)} sxy=zΓ(x)Γ(y)logk(z)1

资源分配指标(RA)

s x y = ∑ z ∈ Γ ( x ) ∩ Γ ( y ) 1 k ( z ) s_{xy}=\sum_{z\in \Gamma(x)\cap\Gamma(y)}\frac{1}{k(z)} sxy=zΓ(x)Γ(y)k(z)1

基于全局信息的节点相似度指标

局部路径指标

S = A 2 + α A 3 S=A^2+\alpha A^3 S=A2+αA3

其中 ( A n ) x y (A^n)_{xy} (An)xy给出了节点x和y之间长度为n的路径数。

Katz指标

s x y = ∑ i = 1 ∞ β l ( A l ) x y s_{xy}=\sum_{i=1}^\infty\beta^l(A^l)_{xy} sxy=i=1βl(Al)xy

其中 β \beta β为权重衰减因子。对应的相似矩阵如下:

S = β A + β 2 A 2 + ⋯ = ( I − β A ) − 1 − I S=\beta A+\beta^2A^2+\cdots=(I-\beta A)^{-1}-I S=βA+β2A2+=(IβA)1I

LHN-II指标

太复杂。。。不写

基于随机游走的相似度指标

平均通勤时间(Average Commute Time,ACT)

略。。。以后用到再写。

基于随机游走的余弦相似性(cos +)

略。。。以后用到再写。

重启的随机游走(Random Work with Restart,RWR)

略。。。以后用到再写。

SimRank(SimR)指标

基本假设是如果两节点所连接的节点相似,那么这两个节点就相似,其定义如下:

s x y S i m R = C ∑ z ∈ Γ ( x ) ∑ z , ∈ Γ ( y ) k x k y s_{xy}^{SimR}=C\frac{\sum_{z\in \Gamma(x)}\sum_{z^{,}\in \Gamma(y)}}{k_xk_y} sxySimR=CkxkyzΓ(x)z,Γ(y)

其中假定 s x x = 1 , C ∈ [ 0 , 1 ] s_{xx}=1,C\in[0,1] sxx=1,C[0,1]为相似性传递时的衰减参数。SimR指标可以用来描述两个分别从节点x和y出发的粒子多久会相遇。

局部随机游走指标

略。。。以后用到再写。

叠加的随机游走指标

略。。。以后用到再写。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值