一、概念
辛普森积分是数值积分的一种,是中点公式和梯形公式的改进。
二、解析
假定我们要求如下定积分:
略微懂一点微积分知识的都知道,对于一个黎曼可积的函数,我们要求其在某个闭区间上的定积分,要先求该函数的不定积分,即先求原函数。就是找到一个函数 F(x),使得 F′(x)=f(x),然后根据牛顿—莱布尼茨公式去搞。即:
而有时候原函数并不好求,比如要求原的函数长得很复杂,要求的原函数非初等函数。这时我们需要“避其锋芒”,采用一种利用“近似”思想的方法。
我们都知道定积分就是曲线 f(x) 下方的面积(假设 f(x) 恒大于 0 ),我们考虑一种近似求出曲线下方面积的方法——辛普森法。
我们先在区间[a,b]中等距地取奇数个点a=x0,x1,x2,...,xn=b,相邻两点间的距离为Δx,再设yi=f(xi),然后套用公式:
点取得越多,近似程度就越高,但计算量也越大。当只取三个点的时候,有:
这就是三点辛普森公式,又简称辛普森公式。
然而如果只取三个点误差肯定大,取太多的点计算量也会上去。那么到底取多少个点合适呢?
还好辛普森积分有一个重要的“变种”,称为自适应辛普森法(adaptive Simpson’s rule),我们设置一个精度Eps,让算法根据具体情况递归的划分区间,容易近似的地方少划几份,不容易近似的地方多划几份。这就是所谓的“自适应”。
具体的话,就是设区间 [a,b] 的中点为 c,则当且仅当:
时(加==亦可)直接返回结果,否则递归调用,再次划分区间。递归调用时精度Eps也要相应地减小一半。 Ps:
这里的S(a,b) 就是 [a,b] 的三点辛普森公式值,返回的结果是S(c,b)+S(a,c)+Δs,Δs=[S(a,c)+S(c,b)−S(a,b)]/15。顺便提醒一句,如果直接返回 S(a,b) 的话,可能存在的误差超出可接受范围,就是比较可能会出错。还有这个 15 是怎么来的别问我。
三、总结
四、代码
double f(double x)
{
return b * sqrt(1 - (x * x) / (a * a)); // 写要求辛普森积分的函数,如:椭圆公式 y 表达式
}
double simpson(double a, double b) // 三点辛普森积分法,要求f(x)是全局函数
{
double c = a + (b - a) / 2;
return (f(a) + 4 * f(c) + f(b)) * (b - a) / 6;
}
double integral(double L, double R, double Eps) // 自适应辛普森积分递归过程
{
// 这里 mid 不能定义为全局变量,因为最后一条 return 有两个 mid 若是全局,第二个递归的 mid 会有更换
double mid = L + (R - L) / 2;
double ST = simpson(L, R), SL = simpson(L, mid), SR = simpson(mid, R);
if(fabs(SL + SR - ST) <= 15 * Eps) return SL + SR + (SL + SR - ST) / 15; // 直接返回结果
// 若这里直接 return ST; 会 WA
return integral(L, mid, Eps/2) + integral(mid, R, Eps/2); // 对半划分区间
}