聚类
K-means的应用场景
客户细分、数据分析、降维、半监督学习、搜索引擎、分割图像
sklearn实现K-means
使用鸢尾花数据进行聚类
from sklearn.cluster import KMeans
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris['data'][:, :2], iris['target']
k = 3
kmeans = KMeans(n_clusters=k)
y_pred = kmeans.fit_predict(X)
y_pred is kmeans.labels_
聚类结果
查看三个中心点
kmeans.cluster_centers_
使用K-means进行图片分割
显示原图像
import cv2
img = cv2.imread('pic.jpeg')
img=img[:,:,::-1]
plt.imshow(img)
plt.show()
可以看到原图像可以分为蓝色和白色
RGB分布
X=img.reshape(-1,3)
from sklearn.cluster import KMeans
km = KMeans(n_clusters=2)
km.fit(X)
y = km.labels_
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(6, 6))
ax = Axes3D(fig)
ax.scatter(X[:,0],X[:,1],X[:,2