无监督学习-kmeans聚类算法及手动实现

K-means的应用场景

客户细分、数据分析、降维、半监督学习、搜索引擎、分割图像

sklearn实现K-means

使用鸢尾花数据进行聚类

from sklearn.cluster import KMeans
from sklearn import datasets

iris = datasets.load_iris()
X, y = iris['data'][:, :2], iris['target']
k = 3
kmeans = KMeans(n_clusters=k)
y_pred = kmeans.fit_predict(X)
y_pred is kmeans.labels_

聚类结果

在这里插入图片描述

查看三个中心点

kmeans.cluster_centers_

在这里插入图片描述

使用K-means进行图片分割

显示原图像

import cv2

img = cv2.imread('pic.jpeg')
img=img[:,:,::-1]
plt.imshow(img)
plt.show()

在这里插入图片描述
可以看到原图像可以分为蓝色和白色

RGB分布

X=img.reshape(-1,3)
from sklearn.cluster import KMeans

km = KMeans(n_clusters=2)
km.fit(X)
y = km.labels_
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(6, 6))
ax = Axes3D(fig)
ax.scatter(X[:,0],X[:,1],X[:,2
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值