通俗易懂的机器学习——梯度上升主成分分析数学原理推导及解释

前言

梯度上升主成分分析也是一个常用来进行降维、降噪的操作,它通过变换坐标轴(实际上是数据的映射)使得数据直接的方差最大,即更容易划分

目的和原理浅析

获得主成分特征向量,在梯度上升主成分分析中求的是能够将原数据映射到方差更大的坐标轴上(有些书或视频也说移动坐标轴),而映射的方式可以是乘上一个映射方向的单位向量。

预处理

为了方便运算,首先要将数据进行预处理,这里做的预处理是均值零化,即:将所有数据减去均值。
x i = x i − x ˉ x_i=x_i- \bar{x} xi=xixˉ

公式推导以及解释

目标

我们要得到的是方差最大的数据,即:
m a x 1 n ∑ i = 1 n ( x p i − x ˉ ) 2 max \frac{1}{n} \sum_{i=1}^n(x^i_p-\bar{x})^2 maxn1i=1n(xpixˉ)2
由于我们进行过数据的预处理。所以我们的目标就变为了:
m a x 1 n ∑ i = 1 n ( x p i ) 2 max \frac{1}{n} \sum_{i=1}^n(x^i_p)^2 maxn1i=1n(xpi)2

映射关系推导

假设xi要映射到新的坐标轴上
x i w = ∣ x i ∣ ⋅ ∣ w ∣ c o s θ x^iw= \rvert x^i \lvert \cdot \rvert w \lvert cos\theta xiw=xiwcosθ
在这里我们假设向量w为单位向量
则使之变为:
x i w = ∣ x i ∣ c o s θ = x p i ( x p i 为 变 换 后 的 目 标 数 据 ) x^iw= \rvert x^i \lvert cos\theta=x^i_p(x^i_p为变换后的目标数据) xiw=xicosθ=xpixpi

将映射关系带入

带入映射关系后我们的目标变为了
m a x 1 n ∑ i = 1 n ( x i w ) 2 max \frac{1}{n} \sum_{i=1}^n(x^iw)^2 maxn1i=1n(xiw)2

梯度上升

构建一个函数

现在我们构建一个函数
f ( w ) = 1 n ∑ i = 1 n ( x i w ) 2 = 1 n ∑ i = 1 n ( x 1 i w ) 2 + ( x 2 i w ) 2 + ( x 3 i w ) 2 + ⋅ ⋅ ⋅ ( x n i w ) 2 f(w)= \frac{1}{n} \sum_{i=1}^{n}(x^iw)^2 \\= \frac{1}{n} \sum_{i=1}^{n}(x^i_1w)^2+(x^i_2w)^2+(x^i_3w)^2+ \cdot \cdot \cdot (x^i_nw)^2 f(w)=n1i=1n(xiw)2=n1i=1n(x1iw)2+(x2iw)2+(x3iw)2+(xniw)2

求导

下面我们开始对f(w)求导
∇ f ( w ) = 2 n x T ( x w ) \nabla f(w)= \frac{2}{n}x^T(xw) f(w)=n2xT(xw)
我们的问题就变成了使用上述式子进行梯度上升,接下来我们使用梯度上升的方式优化w,优化得到的w即为可以将数据转换到方差更大的坐标轴上的主成分

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值