pytorch零基础实现语义分割项目(一)——数据概况及预处理

本文介绍了使用PyTorch进行语义分割项目的初步步骤,包括数据集的概况、数据预处理和组织形式。数据集来源于Kaggle,通过创建新目录并转换16进制标签为RGB,同时进行了训练集和测试集的划分。还讨论了如何获取数据集的通道均值和方差,为后续数据处理和模型训练做好准备。
摘要由CSDN通过智能技术生成

项目列表

语义分割项目(一)——数据概况及预处理

语义分割项目(二)——标签转换与数据加载

语义分割项目(三)——语义分割模型(U-net和deeplavb3+)

语义分割项目(四)——模型训练与预测


前言

在本专栏的上一个项目中我们介绍了使用CNN进行图像分类,在本项目中我们将介绍另外一种对于图像进行处理的算法——语义分割

数据集

概况

我们这次使用的是来自kaggle的数据集
数据集地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值