torch.mul(a,b) 实现矩阵a和矩阵b的对位相乘,要求两矩阵各维度元素个数完全一致。
torch.mm(a,b) 实现矩阵相乘,a、b维度符合矩阵相乘的规则。
torch.matmul(a,b) 实现带有广播机制的乘法,低维tensor可以依据矩阵乘规则自动适配到高维。进行多维度运算时,仅对后面的两个维度进行计算,这一般也符合我们的需求
@ 也可用于矩阵乘法,是torch.matmul()的重写,但不常用,可参见:python中 @ 的含义与用法
torch.mul(a,b) 实现矩阵a和矩阵b的对位相乘,要求两矩阵各维度元素个数完全一致。
torch.mm(a,b) 实现矩阵相乘,a、b维度符合矩阵相乘的规则。
torch.matmul(a,b) 实现带有广播机制的乘法,低维tensor可以依据矩阵乘规则自动适配到高维。进行多维度运算时,仅对后面的两个维度进行计算,这一般也符合我们的需求
@ 也可用于矩阵乘法,是torch.matmul()的重写,但不常用,可参见:python中 @ 的含义与用法