Tensor的三种乘法

本文介绍了在PyTorch中,torch.mul(a, b)用于对位相乘,要求矩阵维度一致;torch.mm(a, b)执行标准矩阵乘法,遵循乘法规则;torch.matmul(a, b)提供广播机制,针对多维运算高效处理。重点讲解了这三个函数在实际应用中的区别和用法。
摘要由CSDN通过智能技术生成

torch.mul(a,b) 实现矩阵a和矩阵b的对位相乘,要求两矩阵各维度元素个数完全一致

torch.mm(a,b) 实现矩阵相乘a、b维度符合矩阵相乘的规则

torch.matmul(a,b) 实现带有广播机制的乘法,低维tensor可以依据矩阵乘规则自动适配到高维。进行多维度运算时,仅对后面的两个维度进行计算,这一般也符合我们的需求

@ 也可用于矩阵乘法,是torch.matmul()的重写,但不常用,可参见:python中 @ 的含义与用法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值