一个售货员必须访问n个城市,恰好访问每个城市一次,并最终回到出发城市。
售货员从城市到城市的旅行费用是一个整数,旅行所需的全部费用是他旅行经过的的各边费用之和,而售货员希望使整个旅行费用最低。
(等价于求图的最短哈密尔顿回路问题)
输入格式
第一行两个数n和m,表示顶点数和边数。
接下来行,每行三个数,表示有向边h和路径长度。
图中可能有重边和自环。
输出格式
一个数如果不存在哈密顿环路,则输出-1,否则输出最短哈密尔顿回路长度。
样例
input
4 12
1 2 1
1 3 10
1 4 10
2 1 10
2 3 1
2 4 10
3 1 10
3 2 10
3 4 1
4 1 1
4 2 10
4 3 10
output
4
邻接矩阵dfs:
非常容易超时,n取到12的时候已经扛不住了…
#include <algorithm>
#include <iostream>
using namespace std;
int map[13][13];
int book[13];
const int INF = 11111111;
long long sum = 0, n, m, cnt = 0, ans = INF;
void dfs(int c) {
if (cnt >= n - 1) {
ans = min(sum + map[c][1], ans);
return;
}
book[c] = 1;
for (int i = 1; i <= n; i++) {
if (!book[i]) {
sum += map[c][i];
cnt++;
dfs(i);
cnt--;
sum -= map[c][i];
}
}
book[c] = 0;
}
int main() {
cin >> n >> m;
if (!m) {
if (n == 1) {
cout << 0;
} else
cout << -1;
return 0;
}
fill(*map, *map + 13 * 13 + 1, INF);
for (int i = 1; i <= n; i++)
map[i][i] = 0;
while (m--) {
int a, b, v;
cin >> a >> b >> v;
if (a != b)
map[a][b] = min(map[a][b], v);
}
if (n == 1) {
cout << 0;
return 0;
}
dfs(1);
cout << (ans != INF ? ans : -1);
return 0;
}
邻接表dfs
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
const int INF = 11111111;
long long sum = 0, n, m, cnt = 0, ans = INF;
int book[13];
struct node {
long long to, w;
node(int t, int ww) {
to = t;
w = ww;
}
};
int mm[13][13];
vector<node> map[13];
void dfs(int c) {
if (cnt >= n - 1) {
ans = min(sum + mm[c][1], ans);
return;
}
book[c] = 1;
for (auto i : map[c]) {
if (!book[i.to]) {
sum += i.w;
cnt++;
dfs(i.to);
cnt--;
sum -= i.w;
}
}
book[c] = 0;
}
int main() {
cin >> n >> m;
if (!m) {
if (n == 1) {
cout << 0;
} else
cout << -1;
return 0;
}
fill(*mm, *mm + 13 * 13 + 1, INF);
while (m--) {
int a, b, v;
cin >> a >> b >> v;
if (a != b)
mm[a][b] = min(mm[a][b], v);
}
if (n == 1) {
cout << 0;
return 0;
}
for (int i = 1; i <= n; i++) {
map[i].push_back(node(i, 0));
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (mm[i][j] && mm[i][j] != INF)
map[i].push_back(node(j, mm[i][j]));
}
}
dfs(1);
cout << (ans != INF ? ans : -1);
return 0;
}
注意一定要考虑n=1和m=0的特殊情况!!
以及这个邻接表其实写的不太好。
参考下图:
可以额外用一个vector来存储路径。以及剪枝的问题。