链接:https://ac.nowcoder.com/acm/contest/317/B
来源:牛客网
题目描述
小a非常喜欢204204这个数字,因为′a′+′k′=204′a′+′k′=204。
现在他有一个长度为nn的序列,其中只含有2,0,42,0,4这三种数字
设aiai为序列中第ii个数,你需要重新排列这个数列,使得∑ni=1(ai−ai−1)2∑i=1n(ai−ai−1)2最大(公式的含义是:每个数与前一个数差的平方的和)
注意:我们默认a0=0a0=0
输入描述:
第一行一个整数nn 接下来一行nn个整数,第ii个数表示aiai
输出描述:
输出一个整数,表示∑ni=1(ai−ai−1)2∑i=1n(ai−ai−1)2的最大值
示例1
输入
2 2 4
输出
20
说明
样例1解释:按(4,2)(4,2)排列是最优的,此时sum=(4−0)2+(2−4)2=20sum=(4−0)2+(2−4)2=20
示例2
输入
3 2 0 4
输出
36
说明
样例2解释:按(4,0,2)(4,0,2)排列是最优的,此时sum=(4−0)2+(0−4)2+(2−0)2=36sum=(4−0)2+(0−4)2+(2−0)2=36
示例3
输入
5 2 4 0 2 4
输出
52
备注:
1⩽n⩽1051⩽n⩽105,保证aiai为2/0/42/0/4中的数
AC代码:
#include<iostream>
#include<math.h>
#include<algorithm>
using namespace std;
#define N 100005
int a[N],b[N];
int main()
{
a[0]=0;
int n,ax=0,bx=0,cx=0,sum=0;
cin>>n;
for(int i=1;i<1+n;i++)
{
cin>>a[i];
}
sort(a,a+n+1);
for(int i=0;i<n+1;i++)
{
if(a[i]==4)ax++;
if(a[i]==2)bx++;
if(a[i]==0)cx++;
}
for(int i=0;i<n+1;i++)
{
if(i%2==1)
{
if(ax!=0){b[i]=4;ax--;continue;}
else if(bx!=0){b[i]=2;bx--;continue;}
else if(cx!=0){b[i]=0;cx--;continue;}
}
else if(i%2==0)
{
if(cx!=0){b[i]=0;cx--;continue;}
else if(bx!=0){b[i]=2;bx--;continue;}
else if(ax!=0){b[i]=4;ax--;continue;}
}
}
// for(int i=0;i<n+1;i++)cout<<b[i]<<endl;
for(int i = 0; i < n; i++)
{
sum = sum + pow(b[i+1]-b[i],2);
}
cout << sum << endl;
return 0;
}
TIPS:
考点:贪心 模拟
输入的序列其实用处不大,因为最终不需要输出方案,我们只需要记录下2/0/4分别出现的次数即可
一个显然的构造策略是首先放置4, 0, 4, 0,直到其中一个用光。
接下来如果4多余,那么可以按4, 0, 4, 0, … , 4, 2, 4, 2, …(先4后2)的方法构造
如果0多余,可以按照4, 0, 4, 0 … 4, 0, 2, 0, 2 …(先2后0)的方法构造
std中的a数组展示了其中一种最优的构造方案
实际上此题还可以推广到更一般的情况,也就是第一个位置放最大的,第二个位置放最小的,第三个位置放
第二大的以此类推,这种思路写起来也会更简单一些