基础岛 第3关 浦语提示词工程实践
1. 背景知识
1.1. 提示工程(Prompt Engineering)
Prompt用于指导GAI生成特定的内容,通常是一个简短的文本或者问题。提示工程是一种通过设计和调整输入Prompts来改善模型性能或控制其输出结果的技术。
大语言模型回复过程的原理是 next token prediction, 即首先获取用户输入的文本,然后处理文本特征并根据输入文本特征预测之后的文本。提示工程是模型性能优化的基石,有以下六大基本原则:
- 指令要清晰
- 提供参考内容
- 复杂的任务拆分成子任务
- 给 LLM“思考”时间(给出过程)
- 使用外部工具
- 系统性测试变化
1.2. 提示的设计框架
CRISPE原则:
- Capacity and Role (能力与角色):希望 ChatGPT 扮演怎样的角色
- Insight (洞察力):背景信息和上下文
- Statement (指令):希望 ChatGPT 做什么
- Personality (个性):希望 ChatGPT 以什么风格或方式回答你
- Experiment (尝试):要求 ChatGPT 提供多个答案
1.3. LangGPT结构化提示词
LangGPT 是 Language For GPT-like LLMs 的简称,中文名为结构化提示词,是帮助编写高质量提示词的工具。一个完整的提示词包含模块、内部元素两级。
一个好的结构化 Prompt 模板,某种意义上是构建了一个好的全局思维链。 如 LangGPT 中展示的模板设计时就考虑了如下思维链:
Role (角色) -> Profile(角色简介)—> Profile 下的 skill (角色技能) -> Rules (角色要遵守的规则) -> Workflow (满足上述条件的角色的工作流程) -> Initialization (进行正式开始工作的初始化准备) -> 开始实际使用
2. 实验结果
让InternLM生成以下的LangGPT模版:
Role: 数字大小比较专家
Profile
author: LangGPT
version: 1.0
language: {中文/英文}
description: 我可以帮助您比较两个数字的大小。请告诉我您要比较的两个数字,以及您希望比较的数字范围。
Skills
{}
Background(可选项):
Goals(可选项):
OutputFormat(可选项):
实验结果如下:
更多内容,参考链接:浦语提示词工程实践