题目来源:浙江大学MOOC题目集
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤
1
0
3
10^3
103,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
#include<stdio.h>
#include<string.h>
#define MaxSize 1050
int Flag[MaxSize], level[MaxSize]; // Flag--是否访问 level--步数
int Graph[MaxSize][MaxSize];
int N, E;
void CreateGraph(int i) {//无向图
while (i--) {
int u, v;
scanf("%d%d", &u, &v);
Graph[u][v] = 1;
Graph[v][u] = 1;
}
}
void BFS(int v) { //广搜,从顶点v出发
int Que[MaxSize];//模拟队列
int rear=0,front=0;
int level0 = 0;
Flag[v] = 1;
Que[rear++]=v;
level[v]=0;
while (rear != front) {
int temp = Que[front++];//出栈
//printf("temp:%d level:%d\n", temp, level[temp]);
//将temp的所有子节点压入栈
for (int j = 1; j <= N; j ++) {
if (Flag[j] != 1&&Graph[temp][j]!=-1) {//有边且未输出
Que[rear++] = j;
Flag[j] = 1;
level[j] = level[temp] + 1;
}
}
}
return ;
}
int main() {
scanf("%d%d", &N, &E);
memset(Graph, -1, sizeof(int)*MaxSize * MaxSize);
memset(Flag, 0, sizeof(int)*MaxSize);
memset(level, -1, sizeof(int)*MaxSize);//-1代表不连通
CreateGraph(E);
for (int i = 1; i <= N; i++) {
BFS(i);//认为全部都连通
int count = 0;
for (int j = 1; j <= N; j++) {
if (level[j] >= 0 && level[j] <= 6)
count++;
}
printf("%d: %.2f%%\n", i, (float)count / (float)N * 100);
//重新BFS
memset(Flag, 0, sizeof(int)*MaxSize);
memset(level, -1, sizeof(int)*MaxSize);//-1代表不连通
}
return 0;
}