哈夫曼树、带权路径长度、前缀编码 的概念

哈夫曼树是一种带权路径长度最短的二叉树,用于优化编码效率,特别是数据压缩。构造哈夫曼树的过程涉及将最小权重的节点合并,形成新节点的权值是旧节点的和。哈夫曼编码是一种前缀编码,确保没有编码是另一个编码的前缀,从而避免解码时的歧义。文章通过例子解释了为什么在哈夫曼树中,最小带权路径长度关注的是叶子节点的WPL之和,以及如何利用哈夫曼编码实现可变长度编码,以高频字符占用较少位数。
摘要由CSDN通过智能技术生成

一、基本概念

1.1带权路径长度(WPL)

路径长度: 经历的边数
结点的带权路径长度: 从树的根到该结点的路径长度 X 该结点上权值。

举例帮助理解
在这里插入图片描述
图中结点A的带权路径长度为: 3 × 5 = 15 3\times5=15 3×5=15
图中结点D的带权路径长度为: 2 × 2 = 4 2\times 2=4 2×2=4


1.2哈夫曼树

树的带权路径长度: 所有叶子结点的带权路径长度之和
哈夫曼树: 在含n个带权结点的二叉树中,带权路径最小的二叉树,又称最优二叉树

【注意】:哈夫曼树是最小带权二叉树,此处指树的带权路径长度(所有叶子结点WPL之和)

二、哈夫曼树的构造

给定n个权值分别为 w 1 , w 2 , w 3 , . . . , w n w_1,w_2,w_3,...,w_n w1,w2,w3,...,wn的结点,构造哈夫曼树的算法描述如下:

  1. 每次从结点集合中选择最小的两个结点,作为新结点的左右子树。
  2. 新结点的权值为被选出的两个结点权值之和。
  3. 删除旧的两个结点,将新结点加入集合
  4. 重复123步骤,直至集合中只剩一个结点

举例帮助理解:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
至此,哈夫曼树构造完毕
W P L = 7 ∗ 1 + 3 ∗ ( 1 + 2 + 2 + 3 ) = 31 WPL=7*1+3*(1+2+2+3)=31 WPL=71+3(1+2+2+3)=31


三、哈夫曼树的应用

3.1哈夫曼编码与前缀编码

笔者在学习过程中,一直不明白,为什么哈夫曼树中,最小带权路径长度,是指所有叶子结点的WPL之和。也就是说,a,b,c,d都只能为叶子结点。
在这里插入图片描述
在此篇文章的案例中给出了答案。


可变长度编码: 允许对不同字符用不等长的二进制位表示
为了使编码的长度更短,进行可变长度编码,频率越高的码,对应的位数越少。根据我们所学的知识,可用哈夫曼树来解决。


举例帮助理解
学霸小甲答应告诉学渣小乙考试答案。他们决定用二进制编码来防止老师发现。
已知:C的出现频率为40%,A为30%,B为20%,D为10%
在这里插入图片描述
这里给出了答案。
对同一答案CAAABD
正确的哈夫曼编码应该为
0101010111110
而错误的哈夫曼编码为
01111110

只用肉眼看,是看不出问题在哪里的。一个合格的编码唯一对应一个答案。那么我们就从得到的编码逆向推导答案。

01111110得到的答案不唯一
0 11 11 11 0 = C B B B C??
0 1 1 1 1 1 1 0 = C A A A A A A C??
在读到A时,哈夫曼树仍可往下读得到B,D。(B,D的编码包含A)
因此,无法判断一个答案的范围。

0101010111110得到的答案唯一
0 10 10 10 111 110
= C A A A B D
而在正确编码中,读到A/B/C/D时,均为叶子结点,哈夫曼树不可往下读。也就实现了自动截断


总结如上,要使编码之间不冲突,则编码之间是互相独立的,没有一个编码是另一个编码的前缀。这样的编码称之为前缀编码
哈夫曼编码就是一种前缀编码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快苏排序OAO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值