POJ - 2955 Brackets (区间dp)

题目链接:Brackets

定义状态dp[i][j]表示i到j这段区间内最长括号序列的长度。

根据题目信息,最长括号长度有两种方式得到。

1、如果s[i]和s[j]匹配的话,dp[i][j] = max(dp[i][j], dp[i + 1][j - 1] + 2)

2、否则枚举中点k,[i, j]内的最长括号序列是由[i, k]和[k + 1, j]拼接而成,dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j])

代码如下:

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>

using namespace std;

bool match(char ch1, char ch2)
{
    if (ch1 == '(' && ch2 == ')')
        return true;
    if (ch1 == '[' && ch2 == ']')
        return true;
    return false;
}

int main()
{
    //freopen("test.txt", "r", stdin);
    char s[105];
    int dp[105][105];
    while (~scanf("%s", s))
    {
        if (!strcmp(s, "end"))
            break;
        memset(dp, 0, sizeof(dp));
        int cnt = strlen(s);
        for (int len = 1; len < cnt; len++)
            for (int i = 0; i < cnt; i++)
            {
                int j = i + len;
                if (j >= cnt)
                    break;
                if (match(s[i], s[j]))
                    dp[i][j] = max(dp[i][j], dp[i + 1][j - 1] + 2);
                for (int k = i; k < j; k++)
                    dp[i][j] = max(dp[i][j], dp[i][k] + dp[k + 1][j]);
            }
        printf("%d\n", dp[0][cnt - 1]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值