给数列 a n a_n an,施线性变换 a k ′ ← ∑ n ≥ k a n n + 1 a'_k \leftarrow \sum_{n\ge k} \frac{a_n}{n+1} ak′←∑n≥kn+1an 进行 m m m 次。
我们来尝试回答一下 F 0 ( x ) ↦ F 1 ( x ) F_0(x) \mapsto F_1(x) F0(x)↦F1(x) 的过程如何用代数工具刻画。考虑变换:
∫ 0 1 F ( x t + ( 1 − t ) ) d t \int_0^1 F(xt+(1-t)) \,\mathrm{d} t ∫01F(xt+(1−t))dt
对于 x n x^n xn 展开后,会对 x k x^k xk 贡献 ( n k ) t k ( 1 − t ) n − k \binom n k t^k(1-t)^{n-k} (kn)tk(1−t)n−k,而很巧的是 Beta 积分通过分部积分不难算出它是
β ( k , n − k ) = ∫ 0 1 t k ( 1 − t ) n − k d t = k ! ( n − k ) ! ( n + 1 ) ! = 1 ( n + 1 ) ( n k ) \beta(k,n-k)=\int_0^1 t^k(1-t)^{n-k} \,\mathrm{d}t = \frac {k!(n-k)!}{(n+1)!} = \frac1{(n+1)\binom n k} β(k,n−k)=∫01tk(1−t)n−kdt=(n+1)!k!(n−k)!=(n+1)(kn)1
因此上式符合变换的形式显然。那么我们考虑施加 m m m 次变换,就会出现 m m m 个哑元
∫ 0 1 ⋯ ∫ 0 1 F ( x t 1 ⋯ t m + ( 1 − t 1 ⋯ t m ) ) d t 1 ⋯ d t m \int_0^1 \cdots \int_0^1 F(xt_1\cdots t_m+(1-t_1\cdots t_m)) \,\mathrm{d} t_1\cdots \mathrm dt_m ∫01⋯∫01F(xt1⋯tm+(1−t1⋯tm))dt1⋯dtm
我们先记哑变量 t \mathbf t t,就有
F ( x t + 1 − t ) = F ( 1 + ( x − 1 ) t ) F(x\mathbf t + 1 - \mathbf t) = F(1+(x-1)\mathbf t) F(xt+1−t)=F(1+(x−1)t)
记 G ( x ) = F ( 1 + x ) G(x) = F(1+x) G(x)=F(1+x),就有我们欲求
G ( ( x − 1 ) t ) = ∑ n g n ( x − 1 ) n t n = ∑ n g n ( x − 1 ) n ∫ 0 1 ⋯ ∫ 0 1 ( t 1 ⋯ t m ) n d t 1 ⋯ d t m = ∑ n g n ( x − 1 ) n ( ∫ 0 1 t n d t ) m = ∑ n g n ( n + 1 ) m ( x − 1 ) n \begin{aligned} &\quad G((x-1)\mathbf t)\\ &= \sum _n g_n (x-1)^n\mathbf t^n\\ &= \sum _n g_n (x-1)^n \int_0^1 \cdots \int_0^1 (t_1\cdots t_m)^n\,\mathrm{d} t_1\cdots \mathrm dt_m\\ &= \sum _n g_n (x-1)^n \left(\int_0^1 t^n \,\mathrm dt\right)^m\\ &= \sum_n \frac{g_n}{(n+1)^m} (x-1)^n \end{aligned} G((x−1)t)=n∑gn(x−1)ntn=n∑gn(x−1)n∫01⋯∫01(t1⋯tm)ndt1⋯dtm=n∑gn(x−1)n(∫01tndt)m=n∑(n+1)mgn(x−1)n
至此,问题得到完满解决。