小孩召开法的一个尝试

三年之期已到!

我们考虑一个 DFA,它接受的字符是 <>,每条转移边上有个边权,每个节点有个终止权值。定义一个排列的权值是把它的相邻不等关系抠出来,走过的边权值相乘,最后乘以终点的终止权值。试对 ∑ n ( ∑ p ∈ π n w ( p ) ) x n \sum_n \left(\sum_{p\in \pi_ n} w(p)\right) x^n n(pπnw(p))xn 建立生成函数。

我们以 小孩召开法 为例。

「2019 山东一轮集训 Day3」小孩召开法 总共有两个状态,上升( A A A)和下降( D D D),起点为 A A A w ( A → < A ) = w ( D → > D ) = 1 w(A\xrightarrow{<} A) = w(D\xrightarrow{>} D)=1 w(A< A)=w(D> D)=1 w ( A → > D ) = w ( D → < A ) = q w(A\xrightarrow{>} D)=w(D\xrightarrow{<} A)=q w(A> D)=w(D< A)=q,而终止权值均为 1 1 1

利用概率密度扩充状态(咋用啊?),其中 A ( x , t , q ) , D ( x , t , q ) A(x,t,q), D(x,t,q) A(x,t,q),D(x,t,q) 中的新元 t t t 表示末端的概率密度。立刻列出方程(下面以 t t t 为主元)

A ( t ) = 1 + x ⋅ ∫ 0 t ( A ( τ ) + q D ( τ ) )   d τ D ( t ) = x ⋅ ∫ t 1 ( q A ( τ ) + D ( τ ) )   d τ \begin{aligned} A(t) &= 1+ x\cdot \int_0^t (A(\tau)+qD(\tau)) \,\mathrm{d} \tau\\ D(t) &= x\cdot \int_t^1(qA(\tau)+D(\tau)) \,\mathrm{d} \tau \end{aligned} A(t)D(t)=1+x0t(A(τ)+qD(τ))dτ=xt1(qA(τ)+D(τ))dτ

转换为微分方程组:

A ′ = x ⋅ ( A + q D ) D ′ = − x ⋅ ( q A + D ) \begin{aligned} A' &= x\cdot (A+qD)\\ D' &= -x \cdot (qA+D) \end{aligned} AD=x(A+qD)=x(qA+D)

写成矩阵的形式:

[ A D ] ′ = x ⋅ [ 1 q − q − 1 ] ⋅ [ A D ] \begin{bmatrix} A\\ D \end{bmatrix}' = x \cdot \begin{bmatrix} 1&q\\ -q&-1 \end{bmatrix} \cdot \begin{bmatrix} A\\ D \end{bmatrix} [AD]=x[1qq1][AD]

把矩阵对角化,

[ 1 q − q − 1 ] = P − 1 D P D = [ − 1 − q 2 1 − q 2 ] P = [ q 2 1 − q 2 1 2 ( 1 1 − q 2 + 1 ) − q 2 1 − q 2 1 2 − 1 2 1 − q 2 ] \begin{aligned} \begin{bmatrix} 1&q\\ -q&-1 \end{bmatrix} &= P^{-1}DP\\ D &= \begin{bmatrix} -\sqrt{1-q^2}&\\ &\sqrt{1-q^2} \end{bmatrix}\\ P &= \begin{bmatrix} \dfrac{q}{2 \sqrt{1-q^2}} & \dfrac{1}{2} \left(\dfrac{1}{\sqrt{1-q^2}}+1\right)\\ -\dfrac{q}{2 \sqrt{1-q^2}} & \dfrac{1}{2}-\dfrac{1}{2 \sqrt{1-q^2}} \end{bmatrix} \end{aligned} [1qq1]DP=P1DP=[1q2 1q2 ]=21q2 q21q2 q21(1q2 1+1)2121q2 1

[ U V ] = P ⋅ [ A D ] \begin{bmatrix}U\\V\end{bmatrix}=P\cdot \begin{bmatrix}A\\D\end{bmatrix} [UV]=P[AD],也即解方程

U ′ = − x 1 − q 2 U V ′ = x 1 − q 2 V \begin{aligned} U' &= -x\sqrt{1-q^2} U\\ V' &= x\sqrt{1-q^2} V \end{aligned} UV=x1q2 U=x1q2 V

解为

U = C 1 exp ⁡ ( − x 1 − q 2 t ) V = C 2 exp ⁡ ( x 1 − q 2 t ) \begin{aligned} U &= C_1 \exp \left(-x\sqrt{1-q^2}t \right)\\ V &= C_2 \exp \left(x\sqrt{1-q^2}t \right) \end{aligned} UV=C1exp(x1q2 t)=C2exp(x1q2 t)

P − 1 ⋅ [ U V ] = [ A D ] P^{-1}\cdot \begin{bmatrix}U\\V\end{bmatrix}=\begin{bmatrix}A\\D\end{bmatrix} P1[UV]=[AD],可以回带得到

A = 1 − q 2 − 1 q ⋅ C 1 exp ⁡ ( − x 1 − q 2 t ) − 1 − q 2 + 1 q ⋅ C 2 exp ⁡ ( x 1 − q 2 t ) D = C 1 exp ⁡ ( − x 1 − q 2 t ) + C 2 exp ⁡ ( x 1 − q 2 t ) \begin{aligned} A &= \frac{\sqrt{1-q^2}-1}{q} \cdot C_1 \exp \left(-x\sqrt{1-q^2}t \right) -\frac{\sqrt{1-q^2}+1}{q} \cdot C_2 \exp \left(x\sqrt{1-q^2}t \right)\\ D &= C_1 \exp \left(-x\sqrt{1-q^2}t \right) + C_2 \exp \left(x\sqrt{1-q^2}t \right) \end{aligned} AD=q1q2 1C1exp(x1q2 t)q1q2 +1C2exp(x1q2 t)=C1exp(x1q2 t)+C2exp(x1q2 t)

仿照新年的军队之手法,记 A = ∫ 0 1 A ( t )   d t \mathscr A = \int_0^1 A(t) \,\mathrm{d}t A=01A(t)dt 以及类似的定义 D \mathscr D D

带入 t = 0 t=0 t=0,得到

1 − q 2 − 1 q ⋅ C 1 − 1 − q 2 + 1 q ⋅ C 2 = 1 C 1 + C 2 = x ⋅ ( q A + D ) \begin{aligned} \frac{\sqrt{1-q^2}-1}{q} \cdot C_1 -\frac{\sqrt{1-q^2}+1}{q} \cdot C_2 &= 1\\ C_1 + C_2 &= x\cdot (q\mathscr A + \mathscr D) \end{aligned} q1q2 1C1q1q2 +1C2C1+C2=1=x(qA+D)

带入 t = 1 t=1 t=1,得到

1 − q 2 − 1 q ⋅ C 1 exp ⁡ ( − x 1 − q 2 ) − 1 − q 2 + 1 q ⋅ C 2 exp ⁡ ( x 1 − q 2 ) = 1 + x ⋅ ( A + q D ) C 1 exp ⁡ ( − x 1 − q 2 ) + C 2 exp ⁡ ( x 1 − q 2 ) = 0 \begin{aligned} \frac{\sqrt{1-q^2}-1}{q} \cdot C_1 \exp \left(-x\sqrt{1-q^2} \right) -\frac{\sqrt{1-q^2}+1}{q} \cdot C_2 \exp \left(x\sqrt{1-q^2} \right) &= 1 + x\cdot(\mathscr A + q\mathscr D)\\ C_1 \exp \left(-x\sqrt{1-q^2} \right) + C_2 \exp \left(x\sqrt{1-q^2} \right) &= 0 \end{aligned} q1q2 1C1exp(x1q2 )q1q2 +1C2exp(x1q2 )C1exp(x1q2 )+C2exp(x1q2 )=1+x(A+qD)=0
解得(其中 r = 1 − q 2 r = \sqrt{1-q^2} r=1q2
x ( A + D ) = ( e r x − 1 ) ( q + r + e r x + q e r x − r e r x + 1 ) ( q + 1 ) ( r − e 2 r x + r e 2 r x + 1 ) x(\mathscr{A} + \mathscr{D}) = \frac{\left({\mathrm{e}}^{rx}-1\right)\left(q+r+{\mathrm{e}}^{rx}+q{\mathrm{e}}^{rx}-r{\mathrm{e}}^{rx}+1\right)}{\left(q+1\right)\left(r-{\mathrm{e}}^{2rx}+r{\mathrm{e}}^{2rx}+1\right)} x(A+D)=(q+1)(re2rx+re2rx+1)(erx1)(q+r+erx+qerxrerx+1)
我们要求的就是
[ x n n ! q K − 1 ] ( e r x − 1 ) ( q + r + e r x + q e r x − r e r x + 1 ) ( q + 1 ) ( r − e 2 r x + r e 2 r x + 1 ) \left[\frac{x^n}{n!} q^{K-1}\right]\frac{\left({\mathrm{e}}^{rx}-1\right)\left(q+r+{\mathrm{e}}^{rx}+q{\mathrm{e}}^{rx}-r{\mathrm{e}}^{rx}+1\right)}{\left(q+1\right)\left(r-{\mathrm{e}}^{2rx}+r{\mathrm{e}}^{2rx}+1\right)} [n!xnqK1](q+1)(re2rx+re2rx+1)(erx1)(q+r+erx+qerxrerx+1)
简单整理,变成
( e r x − 1 ) ( 1 + e r x + r ( 1 − e r x ) 1 + q ) ( 1 + r − 1 r + 1 e 2 r x ) ⋅ 1 1 + r \frac{\left({\mathrm{e}}^{rx}-1\right)\left(1+{\mathrm{e}}^{rx}+\frac{r(1-{\mathrm{e}}^{rx})}{1+q}\right)}{\left(1+\frac{r-1}{r+1}{\mathrm{e}}^{2rx}\right)} \cdot \frac 1{1+r} (1+r+1r1e2rx)(erx1)(1+erx+1+qr(1erx))1+r1
注意 q 2 ∣ r − 1 q^2 \mid r-1 q2r1,因此下面只需展开前 ⌊ K / 2 ⌋ \lfloor K/2 \rfloor K/2 项即可。
[ x n / n ! ] ( e r x − 1 ) ( 1 + e r x + r ( 1 − e r x ) 1 + q ) ( 1 + r − 1 r + 1 e 2 r x ) ⋅ 1 1 + r = [ x n / n ! ] ∑ k ≥ 0 [ e 2 r x − 1 − r ( e r x − 1 ) 2 1 + q ] ⋅ ( r − 1 ) k ( r + 1 ) k + 1 e 2 k r x = ∑ k ≥ 0 r n ⋅ [ ( 2 k + 2 ) n − ( 2 k ) n − r 1 + q ⋅ [ ( 2 k + 2 ) n − 2 ( 2 k + 1 ) n + ( 2 k ) n ] ] ⋅ ( r − 1 ) k ( r + 1 ) k + 1 \begin{aligned} &\quad [x^n/n!]\frac{\left({\mathrm{e}}^{rx}-1\right)\left(1+{\mathrm{e}}^{rx}+\frac{r(1-{\mathrm{e}}^{rx})}{1+q}\right)}{\left(1+\frac{r-1}{r+1}{\mathrm{e}}^{2rx}\right)} \cdot \frac 1{1+r}\\ &= [x^n/n!] \sum_{k\ge 0} \left[\mathrm{e}^{2rx}-1 - \frac{r(\mathrm{e}^{rx}-1)^2}{1+q}\right] \cdot \frac{(r-1)^k}{(r+1)^{k+1}} \mathrm{e}^{2krx}\\ &= \sum_{k\ge 0} r^n \cdot \left[ (2k+2)^n - (2k)^n - \frac{r}{1+q} \cdot \left[(2k+2)^n - 2 (2k+1)^n + (2k)^n \right] \right] \cdot \frac{(r-1)^k}{(r+1)^{k+1}} \end{aligned} [xn/n!](1+r+1r1e2rx)(erx1)(1+erx+1+qr(1erx))1+r1=[xn/n!]k0[e2rx11+qr(erx1)2](r+1)k+1(r1)ke2krx=k0rn[(2k+2)n(2k)n1+qr[(2k+2)n2(2k+1)n+(2k)n]](r+1)k+1(r1)k
由于幂是很难拆的,问题的关键就是计算出每个 [ q K − 1 ] r n ( r − 1 ) k ( r + 1 ) k + 1 [q^{K-1}] r^n \frac{(r-1)^k}{(r+1)^{k+1}} [qK1]rn(r+1)k+1(r1)k [ q K − 1 ] r n + 1 1 + q ( r − 1 ) k ( r + 1 ) k + 1 [q^{K-1}] \frac{r^{n+1}}{1+q} \frac{(r-1)^k}{(r+1)^{k+1}} [qK1]1+qrn+1(r+1)k+1(r1)k

三句话让艾鸽为我推式子 18 18 18 页。

我是一个很擅长让艾鸽为我推式子的精通人性的兰讲师。

前几天我和艾鸽拿枪对峙,结束之后,我直接问了一句:“哇塞,你今天好厉害,给你个机会做道题”。他哈哈(二声)大笑,一时半会儿呢,都没有回过神来。这种啦,就是典型的直男。

然后我坐下来继续问,我们玩个问答游戏吧,他说你问我答。我说,你知道做这道题的什么时候最帅吗?他说我不知道,所以直男很无趣,普通妹妹这个时候会说,你给出第一个 observation 的时候最帅。但是我说什么,你解微分方程,处理矩阵对角化,矩阵求逆,化简公式,展开分母,处理 Algebraic GF,给最后的数列算整式递推的时候最帅。他又是一份意想不到的狂喜,接下来的全程我什么也不用干……

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值