今有 uoj 群友提及这样一个连通图的方程:
n ≥ 2 , f n = ∑ k ( n − 2 k − 1 ) f k f n − k ( 2 k − 1 ) n\ge 2, \quad f_n = \sum_k \binom{n-2}{k-1} f_kf_{n-k} (2^k-1) n≥2,fn=k∑(k−1n−2)fkfn−k(2k−1)
其组合意义是考虑删去 2 2 2 号点后, 1 1 1 号点所在连通块大小为 k k k,再考虑去掉这个连通块之后剩下的连通块必然只有 2 2 2 号点向其连边。
考虑图的方程 G ( x ) = ∑ n ≥ 0 2 ( n 2 ) x n n ! \displaystyle G(x) = \sum_{n\ge 0} 2^{\binom n 2} \frac{x^n}{n!} G(x)=n≥0∑2(2n)n!xn,注意到有
G ′ ( x ) = ∑ n ≥ 0 2 ( n + 1 2 ) x n n ! = ∑ n ≥ 0 2 ( n 2 ) ( 2 x ) n n ! = G ( 2 x ) \begin{aligned} G'(x)& = \sum_{n\ge 0} 2^{\binom {n+1} 2} \frac{x^n}{n!}\\ &=\sum_{n\ge 0} 2^{\binom n 2} \frac{(2x)^n}{n!}\\ &= G(2x) \end{aligned} G′(x)=n≥0∑2(2n+1)n!xn=n≥0∑2(2n)n!(2x)n=G(2x)
这种 G ′ = G ( 2 x ) G'=G(2x) G′=G(2x) 的形式,问了问懂行的人表示它属于延迟微分方程的范畴,暂不清楚能否有所应用,但是我们接下来需要熟用这一等式来完成推导。根据 F = ln G F = \ln G F=lnG,我们开始进行运算:
G = e F G ′ = e F F ′ = G F ′ G ′ ′ = G ′ F ′ + G F ′ ′ = G F ′ 2 + G F ′ ′ F ′ ′ = G ′ ′ G − F ′ 2 = 2 G ′ ( 2 x ) G − F ′ 2 = 2 G ( 2 x ) F ′ ( 2 x ) G − F ′ 2 = 2 G ′ F ′ ( 2 x ) G − F ′ 2 = F ′ ( 2 F ′ ( 2 x ) − F ′ ) \begin{aligned} G &= \mathrm{e}^F\\ G' &= \mathrm{e}^F F'\\ &= G F'\\ G'' &= G'F'+GF''\\ &= GF'^2+GF''\\ F'' &= \frac{G''}G - F'^2\\ &= \frac{2G'(2x)}G - F'^2\\ &= \frac {2G(2x)F'(2x)}G - F'^2\\ &= \frac{2G'F'(2x)}G - F'^2\\ &= F'(2F'(2x)-F') \end{aligned} GG′G′′F′′=eF=eFF′=GF′=G′F′+GF′′=GF′2+GF′′=GG′′−F′2=G2G′(2x)−F′2=G2G(2x)F′(2x)−F′2=G2G′F′(2x)−F′2=F′(2F′(2x)−F′)
不难验证最终式子与对应的递推式等价。