「营业日志 2020.12.10 Sec2」斜对称矩阵 Pfaffian 的正确求法

我们这里约定

pf ⁡ ( 0 a − a 0 ) = a \operatorname{pf} \begin{pmatrix} 0 & a\\ -a & 0 \end{pmatrix} = a pf(0aa0)=a

基于 det ⁡ A = ( pf ⁡ A ) 2 \det A = (\operatorname{pf} A)^2 detA=(pfA)2 的方法总是在一般交换环上难以计算。但是接下来我们考虑一个 wiki 上的结论:

对于斜对称矩阵 A A A 和任意矩阵 B B B,有 pf ⁡ ( B A B T ) = det ⁡ B ⋅ pf ⁡ A \operatorname{pf} (BAB^{\mathsf T}) = \det B \cdot \operatorname {pf} A pf(BABT)=detBpfA

那么我们令 B B B 为初等行变换,就会得到如下消元过程:

若当前矩阵形如

( 0 a − a 0 ⋮ ⋯ ⋱ ) \left(\begin{array}{cc|c} 0 & a &\\ -a & 0 & \vdots \\ \hline & \cdots \\ & & \ddots \end{array}\right) 0aa0

我们用 − a -a a 所在的行可以消去其下方,而所对应的转置自然而然地通过 a a a 消去了右边的列。

如果一开始 a a a 不是 0 0 0,那么我们需要从下面找到一行,将第 i ( i > 2 ) i(i>2) i(i>2) 行与 2 2 2 行交换,转置地,将第 i i i 列与第 2 2 2 列交换。同时我们需要将 pf ⁡ \operatorname{pf} pf 乘以 − 1 -1 1

最后,消元后的矩阵形如

( a 1 − a 1 a 2 − a 2 ⋱ ⋱ a n / 2 − a n / 2 ) \begin{pmatrix} & a_1\\ -a_1 & \\ & & & a_2\\ &&-a_2&\\ &&&&\ddots\\ &&&\ddots\\ &&&&&&a_{n/2}\\ &&&&&-a_{n/2} \end{pmatrix} a1a1a2a2an/2an/2

显然其 pf ⁡ \operatorname{pf} pf ∏ a i \prod a_i ai

而实现上有一个更加简单的方法,注意到我们将行变换全部进行后,列变换实际上已经不影响答案的计算,所以我们几乎可以直接按照正常行列式计算时候的消元顺序,应当形如

( − a 1 a 1 ⋱ − a n / 2 a n / 2 ) \begin{pmatrix} -a_1\\ & a_1\\ & & \ddots\\ & & & -a_{n/2}\\ &&&& a_{n/2} \end{pmatrix} a1a1an/2an/2

这就引出了 唐老师文章 结尾的奇妙结果。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值