那些你不要的(1)2021.4.27 ~ 2021.6.12

4 月 27 日

尝试使用新方法计算 [ n k ] n \brack k [kn]没有实质突破

主要想法是根据 Lagrange 反演公式,首先有转化
[ n k ] = n ! [ z n ] 1 k ! ( ln ⁡ 1 1 − z ) k = ( n − 1 ) ! [ z n − k ] 1 ( k − 1 ) ! ( z 1 − e − z ) n \begin{aligned} n \brack k &= n![z^n] \frac 1{k!} \left( \ln \frac 1{1-z}\right)^k\\ &= (n-1)! [z^{n-k}] \frac 1{(k-1)!} \left( \frac z{1-e^{-z}} \right)^n \end{aligned} [kn]=n![zn]k!1(ln1z1)k=(n1)![znk](k1)!1(1ezz)n

虽然 Bernoulli 数的单项已经可以 Θ ( n ) \Theta(n) Θ(n) 计算,但是其原因在于 GF
z e z − 1 = ln ⁡ ( 1 + ( e z − 1 ) ) e z − 1 \frac z{e^z - 1} = \frac{\ln (1 + (e^z - 1))}{e^z - 1} ez1z=ez1ln(1+(ez1))

其分子是 ln ⁡ ( 1 + G ) \ln(1+G) ln(1+G) 的一次幂,这个幂次增大的时候又回到了 [ n k ] n\brack k [kn] 这个问题本身。

但有趣的是,我们至少得到了一个新的组合恒等式。

[ n k ] / ( n − 1 k − 1 ) = ∑ m ( − 1 ) n − k − m { n − k m } [ n + m n ] / ( n + m n ) \left.{n\brack k} \middle/ \binom{n-1}{k-1}\right. = \sum_m \left.(-1)^{n-k-m} {n-k \brace m} {n + m \brack n} \middle/ \binom{n+m}{n} \right. [kn]/(k1n1)=m(1)nkm{mnk}[nn+m]/(nn+m)


计数型的树上背包,对 q q q 个点求答案可以做到 Θ ( n 2 + q n log ⁡ n ) \Theta(n^2 + qn\log n) Θ(n2+qnlogn)。这里对问题的定义为:给定一个可以 Θ ( n ) \Theta(n) Θ(n) 进行的线性变换 T \mathbf T T 且该变换只使一个多项式的次数增加 1 1 1。每个点的多项式即为将各子树的多项式乘积施变换 T \mathbf T T。另给定一个向量 a \boldsymbol a a,每个点的答案即该点多项式的系数向量与 a \boldsymbol a a 的点积。

我们先任选一根 Θ ( n 2 ) \Theta(n^2) Θ(n2) 预处理出自底向上的乘积。考虑取阈值 L L L,对于所有子树大小 ≥ L \ge L L 的节点,计算出其自顶向下的乘积。由于这些节点总共只有 n / L n/L n/L 个叶子,那么形成的树只有 n / L n/L n/L 个分叉,我们在分叉处可以直接通过 FFT 计算答案,而其余情况的转移代价总和是 Θ ( n 2 ) \Theta(n^2) Θ(n2)。此时预处理总共消耗 Θ ( n 2 ) + n / L ⋅ Θ ( n log ⁡ n ) \Theta(n^2) + n/L \cdot \Theta(n\log n) Θ(n2)+n/LΘ(nlogn) 的时间。

而一次询问时,考虑取其所在的最深祖先处,首先需要消耗 Θ ( n log ⁡ n ) \Theta(n\log n) Θ(nlogn) 进行一次卷积,然后再消耗 Θ ( n L ) \Theta(nL) Θ(nL) 的时间定位到其。此时取 L = log ⁡ n L=\log n L=logn 便得到复杂度 Θ ( n 2 + q n log ⁡ n ) \Theta(n^2 + qn\log n) Θ(n2+qnlogn)

4 月 29 日

「数据删除」

5 月 1 日

「数据删除」

5 月 3 日

Codeforces Global Round 14 E 的计算改进。

放置一定是若干连续段,且每段的放置顺序单峰,容易发现答案可表为下式
∑ k ≥ 0 ( k + 1 ) ! { n − k k + 1 } 2 n − 2 k − 1 \sum_{k\ge 0} (k+1)! {n-k \brace k+1} 2^{n-2k-1} k0(k+1)!{k+1nk}2n2k1
因此生成函数即为
∑ k ≥ 0 ( k + 1 ) ! x 2 k + 1 ( 1 − 2 x ) ⋯ ( 1 − 2 ( k + 1 ) x ) \sum_{k\ge 0} \frac{(k+1)!x^{2k+1}}{(1-2x)\cdots(1-2(k+1)x)} k0(12x)(12(k+1)x)(k+1)!x2k+1
分治计算,可以 Θ ( M ( n ) log ⁡ n ) \Theta\left(\mathsf{M}(n)\log n\right) Θ(M(n)logn) 时间内求出 1 ∼ n 1\sim n 1n 的答案。

而利用第二类 Stirling 数的容斥展开式,我们可以将上式变换为
− x − 1 + ∑ j ≥ 0 x − 1 1 − 2 j x ( x / 2 ) j ( 1 + x / 2 ) j + 1 -x^{-1} + \sum_{j\ge 0} \frac {x^{-1}}{1-2jx} \frac{(x/2)^j}{(1+x/2)^{j+1}} x1+j012jxx1(1+x/2)j+1(x/2)j

5 月 4 日

Θ ( M ( n ) log ⁡ n ) \Theta(\mathsf{M}(n)\log n) Θ(M(n)logn) 时间计算一条从 ( 0 , 0 ) (0,0) (0,0) 走出的路径,各点处的 [ x y ] x \brack y [yx] 值。

考虑将问题看做一个线性算法 ( a i ) → ∑ a i [ x i y i ] (a_i) \rightarrow \sum a_i {x_i \brack y_i} (ai)ai[yixi] 的转置。考虑将其扩展为计算
∑ a i t − y i t x i ‾ \sum a_i t^{-y_i} t^{\overline{x_i}} aityitxi

那么根据 x i , y i x_i,y_i xi,yi 是游走给出的,可知 t − y i t x i ‾ t^{-y_i} t^{\overline{x_i}} tyitxi 每次都是上一个多项式乘以一个简单分式,分治计算即可。

此法也可以处理 { x y } {x \brace y} {yx} 的情况。

5 月 9 日

「数据删除」

5 月 10 日

简单尝试小模数下的代数问题。对于一个首一 d d d 次多项式 f ( x ) f(x) f(x),考虑计算 f ( x ) 1 / 2 f(x)^{1/2} f(x)1/2 的系数。取模一小奇素数 p p p

首先如果只计算 n n n 次项系数,那么可以考虑 1 / 2 1/2 1/2 p p p 进展开。变成 [ x n ] q ( x ) f ( x ) ∑ i ≥ 0 a i p i [x^n]q(x)f(x)^{\sum_{i\ge 0} a_ip^i} [xn]q(x)f(x)i0aipi 的问题。我们一开始将 n n n 写作 ∑ i ≥ 0 n i p i \sum_{i\ge 0}n_i p^i i0nipi,将 1 / 2 ∈ Z p 1/2\in \mathbb Z_p 1/2Zp 写作 ∑ i ≥ 0 a i p i \sum_{i\ge 0}a_ip^i i0aipi

经过适当的预处理后,我们计算 [ x n ] p ( x ) f ( x ) a 0 f ( x p ) ∑ i ≥ 1 a i p i − 1 [x^n]p(x)f(x)^{a_0} f(x^p)^{\sum_{i\ge 1}a_ip^{i-1}} [xn]p(x)f(x)a0f(xp)i1aipi1 这一过程。其复杂度为 Θ ( d 2 log ⁡ p n ) \Theta(d^2\log_p n) Θ(d2logpn)。和 LibreOJ P577 简单算术一致。

如果是要求 0 ∼ n 0\sim n 0n 的系数呢?设 g ( x ) 2 = f ( x ) g(x)^2 = f(x) g(x)2=f(x),我们考虑等式
g ( x p ) = g ( x ) p = g ( x ) f ( x ) p − 1 2 \begin{aligned} g(x^p) &= g(x)^p \\ &= g(x) f(x)^{\frac{p-1}2} \end{aligned} g(xp)=g(x)p=g(x)f(x)2p1
对于 p ∤ n p\nmid n pn 的时候,我们可以根据微分方程得到一个 Θ ( d ) \Theta(d) Θ(d) 的递推式,而 p ∣ n p\mid n pn 的时候,我们 Θ ( p d ) \Theta(pd) Θ(pd) 进行计算,这里的贡献是 n / p ⋅ Θ ( p d ) n/p \cdot \Theta(pd) n/pΘ(pd) 的。总共复杂度为 Θ ( n d ) \Theta(nd) Θ(nd)

但是目前的计算复杂度总是依赖 p p p 有关的预处理,以及刚刚的问题中由于要计算 f ( x ) p − 1 2 f(x)^{\frac{p-1}2} f(x)2p1,这个做法只能适用于度数小的多项式,而不能用于稀疏多项式。

5 月 11 日

但事实上昨天的问题对任意幂都可以等复杂度。由 g ( x ) = f ( x ) a 0 f ( x p ) ∑ i ≥ 1 a i p i − 1 g(x)=f(x)^{a_0}f(x^p)^{\sum_{i\ge 1}a_ip^{i-1}} g(x)=f(x)a0f(xp)i1aipi1,我们只需将 f ( x ) ∑ i ≥ 1 a i p i − 1 f(x)^{\sum_{i\ge 1}a_ip^{i-1}} f(x)i1aipi1 算到第 n / p n/p n/p 项,复杂度为 T ( n ) = Θ ( n d ) + T ( n / p ) T(n) = \Theta(nd) + T(n/p) T(n)=Θ(nd)+T(n/p) 也即 Θ ( n d ) \Theta(nd) Θ(nd)


如何计算一个多项式进行 k k k 次求和后的系数?首先我们可以计算 ( x e x − 1 ) k \left(\frac x{e^x-1}\right)^k (ex1x)k 的系数,因为一个多项式 f ( x ) f(x) f(x) k k k 次不定求和可以直接用 1 ( e D − 1 ) k f \frac 1{(e^{\mathrm D}-1)^k} f (eD1)k1f 刻画。但是我们还需要定出 c 0 + c 1 x + ⋯ + c k − 1 x k − 1 c_0 + c_1x + \cdots + c_{k-1}x^{k-1} c0+c1x++ck1xk1 这部分。

首先我们需要精确地定义出求和,常见左闭右开和左闭右闭。

  • 左闭右开: f k + 1 ( x ) = ∑ 0 ≤ j < x f k ( j ) f_{k+1}(x) = \sum_{0\le j {\color{red}<} x} f_{k}(j) fk+1(x)=0j<xfk(j),我们注意在这个定义下 f k ( 0 ) , f k ( 1 ) , … , f k ( k − 1 ) = 0 f_k(0),f_k(1),\dots,f_k(k-1)=0 fk(0),fk(1),,fk(k1)=0,也就有 x k ‾ ∣ f k ( x ) x^{\underline k}\mid f_k(x) xkfk(x),这就简单了,对直接一次卷积得到的 f ^ k \hat f_k f^k 来说。我们减去 f ^ k   m o d   x k ‾ \hat f_k \bmod x^{\underline k} f^kmodxk 就得到了实际答案。
  • 左闭右闭: f k + 1 ( x ) = ∑ 0 ≤ j ≤ x f k ( j ) f_{k+1}(x) = \sum_{0\le j {\color{red}\le} x} f_{k}(j) fk+1(x)=0jxfk(j),这里其实有 ( x + k ) k ‾ ∣ f k (x+k)^{\underline k} \mid f_k (x+k)kfk,一个简单的解释是 ( x j ) \binom x j (jx) 进行 k k k 次这样的求和后得到的是 ( x + k j + k ) \binom{x+k}{j+k} (j+kx+k),而这样的二项式线性组合出了原多项式。注意一开始我们要用 e k D ( e D − 1 ) k f \frac {e^{k\mathrm{D}}}{(e^{\mathrm D}-1)^k} f (eD1)kekDf

这样,我们就在 Θ ( M ( n + k ) ) \Theta(\mathsf{M}(n+k)) Θ(M(n+k)) 的时间内完成了。

5 月 12 日

尝试计算一些二项和问题。首先考虑
∑ k ( 2 k k ) ( n n − 2 k ) = [ x n ] 1 1 − 4 x 2 ( 1 + x ) n = [ x n ] 1 1 − 4 ( x 1 − x ) 2 1 1 − x = [ x n ] 1 1 − 2 x − 3 x 2 \begin{aligned} & \quad \sum_{k} \binom{2k}k \binom{n}{n-2k}\\ &= [x^n] \frac 1{\sqrt{1-4x^2}} (1+x)^n\\ &= [x^n] \frac 1{\sqrt{1-4\left(\frac x{1-x}\right)^2}} \frac 1{1-x}\\ &= [x^n] \frac 1{\sqrt{1-2x-3x^2}} \end{aligned} k(k2k)(n2kn)=[xn]14x2 1(1+x)n=[xn]14(1xx)2 11x1=[xn]12x3x2 1

这种二项和的 D-Finite 性质当然是显然的,我们更感兴趣的是其 Algebraic 性质。有了刚刚的式子之后,我们可以很容易地对任何奇素数 p p p 算其   m o d   p \bmod p modp 的任意一项了,因为设 f ( x ) = ( 1 − 2 x − 3 x 2 ) p − 1 2 f(x)=(1-2x-3x^2)^{\frac{p-1}2} f(x)=(12x3x2)2p1,其次数是 p − 1 p-1 p1,递归过程没有除法。并且有
( 1 − 2 x − 3 x 2 ) − 1 / 2 = f ( x ) f ( x p ) ⋯ (1-2x-3x^2)^{-1/2} = f(x)f(x^p)\cdots (12x3x2)1/2=f(x)f(xp)
因此我们就有 a n ≡ a n   m o d   p a ⌊ n / p ⌋ a_n \equiv a_{n\bmod p} a_{\lfloor n/p \rfloor} ananmodpan/p

不过看起来对于处理形如 ( 2 k k ) \binom {2k}k (k2k) 来说,另一条思路可能更具前途。我们直接利用 ( 2 k k ) = [ x 0 ] ( 1 + x ) 2 k x − k \binom{2k}{k}=[x^0](1+x)^{2k}x^{-k} (k2k)=[x0](1+x)2kxk,就有
∑ k ( 2 k k ) ( n n − 2 k ) = ∑ k ( n k ) [ x 0 ] ( 1 + x 2 ) k x − k = [ x 0 ] ( x − 1 + 1 + x ) k \begin{aligned} & \quad \sum_k \binom{2k}k \binom{n}{n-2k}\\ &= \sum_k \binom{n}k [x^0] (1+x^2)^k x^{-k}\\ &= [x^0] \left( x^{-1} + 1 + x \right)^k \end{aligned} k(k2k)(n2kn)=k(kn)[x0](1+x2)kxk=[x0](x1+1+x)k

那么如果我们模素数 p p p,就有
[ x 0 ] ( x − 1 + 1 + x ) k = [ x 0 ] ( x − 1 + 1 + x ) k   m o d   p ( x − p + 1 + x p ) ⌊ k / p ⌋ [x^0] \left( x^{-1} + 1 + x \right)^k = [x^0] \left( x^{-1} + 1 + x \right)^{k\bmod p} \left( x^{-p} + 1 + x^p \right)^{\lfloor k/p\rfloor} [x0](x1+1+x)k=[x0](x1+1+x)kmodp(xp+1+xp)k/p

发现两部分独立,可以直接分离了。这样的证明就是天然对 p = 2 p=2 p=2 也成立的。

我们又考虑稍微复杂点的组合式
∑ 2 ( i + j ) = n ( 2 i i ) ( 2 j j ) ( n 2 i ) = ∑ i ( n i ) [ x 0 ] ( x − 1 + x ) i [ y 0 ] ( y − 1 + y ) n − i = [ x 0 y 0 ] ( x − 1 + x + y − 1 + y ) n = [ u 0 v 0 ] ( ( u − 1 + u 1 ) ( v − 1 + v 1 ) ) n x = u v , y = u / v = ( n n / 2 ) 2 \begin{aligned} &\quad \sum_{2(i+j) = n} \binom{2i}i \binom{2j}j \binom{n}{2i}\\ &= \sum_i \binom n i [x^0](x^{-1}+x)^i [y^0](y^{-1}+y)^{n-i}\\ &= [x^0y^0](x^{-1}+x+y^{-1}+y)^n\\ &= [u^0v^0]((u^{-1}+u^1)(v^{-1}+v^1))^n \quad x=uv, y = u/v\\ &= \binom{n}{n/2}^2 \end{aligned} 2(i+j)=n(i2i)(j2j)(2in)=i(in)[x0](x1+x)i[y0](y1+y)ni=[x0y0](x1+x+y1+y)n=[u0v0]((u1+u1)(v1+v1))nx=uv,y=u/v=(n/2n)2

由此,我们可以尝试冲击一大类组合和式的同余性质了。设 m m m 阶整数拆分 λ ⊢ n \lambda \vdash n λn,那么设序列
a k = k ! [ x k ] ( ∑ i ≥ 0 x λ 1 i i ! λ 1 ) ⋯ ( ∑ i ≥ 0 x λ m i i ! λ m ) a_k = k![x^k] \left( \sum_{i\ge 0} \frac{x^{\lambda_1 i}}{i!^{\lambda_1}} \right)\cdots \left( \sum_{i\ge 0} \frac{x^{\lambda_m i}}{i!^{\lambda_m}} \right) ak=k![xk](i0i!λ1xλ1i)(i0i!λmxλmi)

不难发现其是个整数数列,我们断言对任意素数 p p p
a k ≡ a k   m o d   p a ⌊ k / p ⌋ ( m o d p ) a_k \equiv a_{k\bmod p} a_{\lfloor k/p \rfloor} \pmod p akakmodpak/p(modp)

方法是我们进行构造,转化为数列
[ x 1 0 … x n 0 ] 1 1 − t ( x 1 / x 2 + ⋯ + x λ 1 − 1 / x λ 1 + x λ 1 / x 1 ) − ⋯ [x_1^0\dots x_n^0] \frac 1{1-t(x_1/x_2 + \cdots + x_{\lambda_1-1}/x_{\lambda_1} + x_{\lambda_1}/x_1) - \cdots} [x10xn0]1t(x1/x2++xλ11/xλ1+xλ1/x1)1

Q ( t , x 1 , … , x n ) = 1 − t ( x 1 / x 2 + ⋯ + x λ 1 − 1 / x λ 1 + x λ 1 / x 1 ) − ⋯ Q(t,x_1,\dots,x_n) = 1-t(x_1/x_2 + \cdots + x_{\lambda_1-1}/x_{\lambda_1} + x_{\lambda_1}/x_1) - \cdots Q(t,x1,,xn)=1t(x1/x2++xλ11/xλ1+xλ1/x1),那么由
[ x 1 0 … x n 0 ] 1 Q ( t , x 1 , … , x n ) = [ x 1 0 … x n 0 ] Q ( t , x 1 , … , x n ) p − 1 Q ( t p , x 1 p , … , x n p ) [x_1^0\dots x_n^0] \frac 1{Q(t,x_1,\dots,x_n)} = [x_1^0\dots x_n^0] \frac {Q(t,x_1,\dots,x_n)^{p-1}}{Q(t^p,x_1^p,\dots,x_n^p)} [x10xn0]Q(t,x1,,xn)1=[x10xn0]Q(tp,x1p,,xnp)Q(t,x1,,xn)p1

观察系数即可得到结果。

5 月 16 日

「数据删除」

5 月 31 日

让我们继续扩展 UOJ 633 你将如闪电般归来。考虑将其拓展为输入一个度数为 d d d 的多项式 f ( x ) f(x) f(x)

那么考虑 F d ( x ) = f ( d ) ( sinh ⁡ − 1 x ) F_{d}(x) = f^{(d)}(\sinh^{-1} x) Fd(x)=f(d)(sinh1x)。那么就有
F d ′ ( x ) = f ( d + 1 ) ( sinh ⁡ − 1 x ) ( sinh ⁡ − 1 x ) ′ = F d + 1 ( x ) ⋅ 1 1 + x 2 F d ′ ′ ( x ) = F d + 2 ( x ) ⋅ 1 1 + x 2 − F d + 1 ( x ) ⋅ x ( 1 + x 2 ) 3 / 2 = F d + 2 ( x ) ⋅ 1 1 + x 2 − F d ′ ( x ) ⋅ x 1 + x 2 ( 1 + x 2 ) F d ′ ′ ( x ) = F d + 2 ( x ) − x F d ′ ( x ) \begin{aligned} F_{d}'(x) &= f^{(d+1)}(\sinh^{-1} x) (\sinh^{-1}x)'\\ &= F_{d+1}(x) \cdot \frac 1{\sqrt{1+x^2}}\\ F_{d}''(x) &= F_{d+2}(x) \cdot \frac 1{1+x^2} - F_{d+1}(x) \cdot \frac x{(1+x^2)^{3/2}}\\ &= F_{d+2}(x) \cdot \frac 1{1+x^2} - F_d'(x) \cdot \frac x{1+x^2}\\ (1+x^2)F_{d}''(x) &= F_{d+2}(x) - xF_d'(x) \end{aligned} Fd(x)Fd′′(x)(1+x2)Fd′′(x)=f(d+1)(sinh1x)(sinh1x)=Fd+1(x)1+x2 1=Fd+2(x)1+x21Fd+1(x)(1+x2)3/2x=Fd+2(x)1+x21Fd(x)1+x2x=Fd+2(x)xFd(x)

两边提取 [ x n ] [x^n] [xn],得
( n + 2 ) ( n + 1 ) f d , n + 2 + n ( n − 1 ) f d , n = f d + 2 , n − n f d , n ( n + 2 ) ( n + 1 ) f d , n + 2 + n 2 f d , n = f d + 2 , n \begin{aligned} (n+2)(n+1)f_{d,n+2} + n(n-1)f_{d,n} &= f_{d+2,n} - nf_{d,n}\\ (n+2)(n+1)f_{d,n+2} + n^2f_{d,n} &= f_{d+2,n} \end{aligned} (n+2)(n+1)fd,n+2+n(n1)fd,n(n+2)(n+1)fd,n+2+n2fd,n=fd+2,nnfd,n=fd+2,n

进行 k k k 次积分,就有 f d , n = ( n + k ) k ‾ g d , n + k f_{d,n} = (n+k)^{\underline k}g_{d,n+k} fd,n=(n+k)kgd,n+k。即得
( n + 2 ) ( n + 1 ) ( n + k + 2 ) k ‾ g d , n + k + 2 + n 2 ( n + k ) k ‾ g d , n + k = ( n + k ) k ‾ g d + 2 , n + k ( n + 2 ) ( n + 1 ) ( n + k + 2 ) ( n + k + 1 ) g d , n + k + 2 + n 2 ( n + 2 ) ( n + 1 ) g d , n + k = ( n + 2 ) ( n + 1 ) g d + 2 , n + k \begin{aligned} (n+2)(n+1) (n+k+2)^{\underline k}g_{d,n+k+2} + n^2 (n+k)^{\underline k}g_{d,n+k} &= (n+k)^{\underline k} g_{d+2,n+k}\\ (n+2)(n+1) (n+k+2)(n+k+1)g_{d,n+k+2} + n^2 (n+2)(n+1)g_{d,n+k} &= (n+2)(n+1) g_{d+2,n+k} \end{aligned} (n+2)(n+1)(n+k+2)kgd,n+k+2+n2(n+k)kgd,n+k(n+2)(n+1)(n+k+2)(n+k+1)gd,n+k+2+n2(n+2)(n+1)gd,n+k=(n+k)kgd+2,n+k=(n+2)(n+1)gd+2,n+k

约分后有
n ( n − 1 ) g d , n + ( n − k − 2 ) 2 g d , n − 2 = g d + 2 , n − 2 + C 1 δ n − k − 1 + C 2 δ n − k n(n-1)g_{d,n} + (n-k-2)^2g_{d,n-2} = g_{d+2,n-2} + C_1\delta_{n-k-1} + C_2\delta_{n-k} n(n1)gd,n+(nk2)2gd,n2=gd+2,n2+C1δnk1+C2δnk

有微分方程
k 2 G d ( x ) + ( 1 − 2 k ) x G d ′ ( x ) + ( 1 + x 2 ) G d ′ ′ ( x ) = G d + 2 ( x ) + C 1 x k − 1 + C 2 x k − 2 k^2 G_d(x) + (1-2k)xG_d'(x) + (1+x^2)G_d''(x) = G_{d+2}(x) + C_1x^{k-1} + C_2x^{k-2} k2Gd(x)+(12k)xGd(x)+(1+x2)Gd′′(x)=Gd+2(x)+C1xk1+C2xk2

X = x − 1 / x 2 , H d ( x ) = G d ( X ) X=\frac{x-1/x}2,H_d(x)=G_d(X) X=2x1/x,Hd(x)=Gd(X),有
k 2 ( 1 + x 2 ) H d ( x ) + ( ( 1 + 2 k ) x + ( 1 − 2 k ) x 3 ) H d ′ ( x ) + ( x 2 + x 4 ) H d ′ ′ ( x ) = ( G d + 2 ( x ) + C 1 X k − 1 + C 2 X k − 2 ) ( 1 + x 2 ) \begin{aligned} &\quad k^2(1+x^2)H_d(x)\\ &+((1+2k)x+(1-2k)x^3)H_d'(x)\\ &+(x^2+x^4)H_d''(x)\\ &= (G_{d+2}(x) + C_1X^{k-1} + C_2X^{k-2})(1+x^2) \end{aligned} k2(1+x2)Hd(x)+((1+2k)x+(12k)x3)Hd(x)+(x2+x4)Hd′′(x)=(Gd+2(x)+C1Xk1+C2Xk2)(1+x2)

可以预见的是,这是一个 Θ ( d 2 k ) \Theta(d^2 k) Θ(d2k) 求系数的算法。能不能把 d d d 去掉一个,怀疑这涉及到某种非常深刻的矛盾,今天先到这里。

6 月 12 日

考虑证明一个恒等式:

[ x n y n ] ( 1 + x ) k ( 1 + y ) l ( 1 − x y ) − k − l − 1 = ( n + k n ) ( n + l n ) [x^ny^n] (1+x)^k (1+y)^l (1-xy)^{-k-l-1} = \binom{n+k}n\binom{n+l}n [xnyn](1+x)k(1+y)l(1xy)kl1=(nn+k)(nn+l)

我们首先考虑扩元,用 u , v u,v u,v 统计 k , l k,l k,l 的次数:

= [ x n y n u k v l ] 1 1 − u ( 1 + x ) / ( 1 − x y ) 1 1 − v ( 1 + y ) / ( 1 − x y ) 1 1 − x y = [ x n y n u k v l ] 1 1 − x y − u ( 1 + x ) 1 1 − x y − v ( 1 + y ) ( 1 − x y ) \begin{aligned} &= [x^ny^nu^kv^l] \frac 1{1-u(1+x)/(1-xy)}\frac 1{1-v(1+y)/(1-xy)} \frac 1{1-xy}\\ &= [x^ny^nu^kv^l] \frac 1{1-xy-u(1+x)}\frac 1{1-xy-v(1+y)} (1-xy) \end{aligned} =[xnynukvl]1u(1+x)/(1xy)11v(1+y)/(1xy)11xy1=[xnynukvl]1xyu(1+x)11xyv(1+y)1(1xy)

考虑约束的 x n y n x^ny^n xnyn,我们换元 x = s t , y = t − 1 x=st,y=t^{-1} x=st,y=t1,就有
= 1 1 − s − u ( 1 + s t ) 1 1 − s − v ( 1 + t − 1 ) ( 1 − s ) = 1 1 − u s t / ( 1 − s − u ) 1 1 − s − u 1 1 − v t − 1 / ( 1 − s − v ) 1 1 − s − v ( 1 − s ) \begin{aligned} &= \frac1{1-s-u(1+st)}\frac 1{1-s-v(1+t^{-1})}(1-s)\\ &= \frac1{1-ust/(1-s-u)} \frac 1{1-s-u} \frac 1{1-vt^{-1}/(1-s-v)} \frac 1{1-s-v} (1-s) \end{aligned} =1su(1+st)11sv(1+t1)1(1s)=1ust/(1su)11su11vt1/(1sv)11sv1(1s)

那么提取 [ t 0 ] [t^0] [t0] 就有
= 1 1 − u v s ( 1 − s − u ) ( 1 − s − v ) 1 1 − s − u 1 1 − s − v ( 1 − s ) = 1 − s ( 1 − s − u ) ( 1 − s − v ) − u v s = 1 − s ( 1 − s ) 2 − ( u + v ) ( 1 − s ) + u v ( 1 − s ) = 1 1 − s − u − v − u v = 1 ( 1 − u ) ( 1 − v ) 1 1 − s ( 1 − u ) ( 1 − v ) [ s n u k v l ] ∙ = ( n + k n ) ( n + l n ) \begin{aligned} &= \frac1{1-\frac{uvs}{(1-s-u)(1-s-v)}} \frac 1{1-s-u} \frac 1{1-s-v} (1-s)\\ &= \frac {1-s}{(1-s-u)(1-s-v)-uvs}\\ &= \frac {1-s}{(1-s)^2 -(u+v)(1-s) + uv(1-s)}\\ &= \frac 1{1-s-u-v-uv}\\ &= \frac 1{(1-u)(1-v)} \frac 1{1-\frac s{(1-u)(1-v)}}\\ [s^nu^kv^l] \bullet &= \binom {n+k}n \binom{n+l}n \end{aligned} [snukvl]=1(1su)(1sv)uvs11su11sv1(1s)=(1su)(1sv)uvs1s=(1s)2(u+v)(1s)+uv(1s)1s=1suvuv1=(1u)(1v)11(1u)(1v)s1=(nn+k)(nn+l)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值