4 月 27 日
尝试使用新方法计算 [ n k ] n \brack k [kn],没有实质突破。
主要想法是根据 Lagrange 反演公式,首先有转化
[
n
k
]
=
n
!
[
z
n
]
1
k
!
(
ln
1
1
−
z
)
k
=
(
n
−
1
)
!
[
z
n
−
k
]
1
(
k
−
1
)
!
(
z
1
−
e
−
z
)
n
\begin{aligned} n \brack k &= n![z^n] \frac 1{k!} \left( \ln \frac 1{1-z}\right)^k\\ &= (n-1)! [z^{n-k}] \frac 1{(k-1)!} \left( \frac z{1-e^{-z}} \right)^n \end{aligned}
[kn]=n![zn]k!1(ln1−z1)k=(n−1)![zn−k](k−1)!1(1−e−zz)n
虽然 Bernoulli 数的单项已经可以
Θ
(
n
)
\Theta(n)
Θ(n) 计算,但是其原因在于 GF
z
e
z
−
1
=
ln
(
1
+
(
e
z
−
1
)
)
e
z
−
1
\frac z{e^z - 1} = \frac{\ln (1 + (e^z - 1))}{e^z - 1}
ez−1z=ez−1ln(1+(ez−1))
其分子是 ln ( 1 + G ) \ln(1+G) ln(1+G) 的一次幂,这个幂次增大的时候又回到了 [ n k ] n\brack k [kn] 这个问题本身。
但有趣的是,我们至少得到了一个新的组合恒等式。
[ n k ] / ( n − 1 k − 1 ) = ∑ m ( − 1 ) n − k − m { n − k m } [ n + m n ] / ( n + m n ) \left.{n\brack k} \middle/ \binom{n-1}{k-1}\right. = \sum_m \left.(-1)^{n-k-m} {n-k \brace m} {n + m \brack n} \middle/ \binom{n+m}{n} \right. [kn]/(k−1n−1)=m∑(−1)n−k−m{mn−k}[nn+m]/(nn+m)
计数型的树上背包,对 q q q 个点求答案可以做到 Θ ( n 2 + q n log n ) \Theta(n^2 + qn\log n) Θ(n2+qnlogn)。这里对问题的定义为:给定一个可以 Θ ( n ) \Theta(n) Θ(n) 进行的线性变换 T \mathbf T T 且该变换只使一个多项式的次数增加 1 1 1。每个点的多项式即为将各子树的多项式乘积施变换 T \mathbf T T。另给定一个向量 a \boldsymbol a a,每个点的答案即该点多项式的系数向量与 a \boldsymbol a a 的点积。
我们先任选一根 Θ ( n 2 ) \Theta(n^2) Θ(n2) 预处理出自底向上的乘积。考虑取阈值 L L L,对于所有子树大小 ≥ L \ge L ≥L 的节点,计算出其自顶向下的乘积。由于这些节点总共只有 n / L n/L n/L 个叶子,那么形成的树只有 n / L n/L n/L 个分叉,我们在分叉处可以直接通过 FFT 计算答案,而其余情况的转移代价总和是 Θ ( n 2 ) \Theta(n^2) Θ(n2)。此时预处理总共消耗 Θ ( n 2 ) + n / L ⋅ Θ ( n log n ) \Theta(n^2) + n/L \cdot \Theta(n\log n) Θ(n2)+n/L⋅Θ(nlogn) 的时间。
而一次询问时,考虑取其所在的最深祖先处,首先需要消耗 Θ ( n log n ) \Theta(n\log n) Θ(nlogn) 进行一次卷积,然后再消耗 Θ ( n L ) \Theta(nL) Θ(nL) 的时间定位到其。此时取 L = log n L=\log n L=logn 便得到复杂度 Θ ( n 2 + q n log n ) \Theta(n^2 + qn\log n) Θ(n2+qnlogn)。
4 月 29 日
「数据删除」
5 月 1 日
「数据删除」
5 月 3 日
将 Codeforces Global Round 14 E 的计算改进。
放置一定是若干连续段,且每段的放置顺序单峰,容易发现答案可表为下式
∑
k
≥
0
(
k
+
1
)
!
{
n
−
k
k
+
1
}
2
n
−
2
k
−
1
\sum_{k\ge 0} (k+1)! {n-k \brace k+1} 2^{n-2k-1}
k≥0∑(k+1)!{k+1n−k}2n−2k−1
因此生成函数即为
∑
k
≥
0
(
k
+
1
)
!
x
2
k
+
1
(
1
−
2
x
)
⋯
(
1
−
2
(
k
+
1
)
x
)
\sum_{k\ge 0} \frac{(k+1)!x^{2k+1}}{(1-2x)\cdots(1-2(k+1)x)}
k≥0∑(1−2x)⋯(1−2(k+1)x)(k+1)!x2k+1
分治计算,可以在
Θ
(
M
(
n
)
log
n
)
\Theta\left(\mathsf{M}(n)\log n\right)
Θ(M(n)logn) 时间内求出
1
∼
n
1\sim n
1∼n 的答案。
而利用第二类 Stirling 数的容斥展开式,我们可以将上式变换为
−
x
−
1
+
∑
j
≥
0
x
−
1
1
−
2
j
x
(
x
/
2
)
j
(
1
+
x
/
2
)
j
+
1
-x^{-1} + \sum_{j\ge 0} \frac {x^{-1}}{1-2jx} \frac{(x/2)^j}{(1+x/2)^{j+1}}
−x−1+j≥0∑1−2jxx−1(1+x/2)j+1(x/2)j
5 月 4 日
在 Θ ( M ( n ) log n ) \Theta(\mathsf{M}(n)\log n) Θ(M(n)logn) 时间计算一条从 ( 0 , 0 ) (0,0) (0,0) 走出的路径,各点处的 [ x y ] x \brack y [yx] 值。
考虑将问题看做一个线性算法
(
a
i
)
→
∑
a
i
[
x
i
y
i
]
(a_i) \rightarrow \sum a_i {x_i \brack y_i}
(ai)→∑ai[yixi] 的转置。考虑将其扩展为计算
∑
a
i
t
−
y
i
t
x
i
‾
\sum a_i t^{-y_i} t^{\overline{x_i}}
∑ait−yitxi
那么根据 x i , y i x_i,y_i xi,yi 是游走给出的,可知 t − y i t x i ‾ t^{-y_i} t^{\overline{x_i}} t−yitxi 每次都是上一个多项式乘以一个简单分式,分治计算即可。
此法也可以处理 { x y } {x \brace y} {yx} 的情况。
5 月 9 日
「数据删除」
5 月 10 日
简单尝试小模数下的代数问题。对于一个首一 d d d 次多项式 f ( x ) f(x) f(x),考虑计算 f ( x ) 1 / 2 f(x)^{1/2} f(x)1/2 的系数。取模一小奇素数 p p p。
首先如果只计算 n n n 次项系数,那么可以考虑 1 / 2 1/2 1/2 的 p p p 进展开。变成 [ x n ] q ( x ) f ( x ) ∑ i ≥ 0 a i p i [x^n]q(x)f(x)^{\sum_{i\ge 0} a_ip^i} [xn]q(x)f(x)∑i≥0aipi 的问题。我们一开始将 n n n 写作 ∑ i ≥ 0 n i p i \sum_{i\ge 0}n_i p^i ∑i≥0nipi,将 1 / 2 ∈ Z p 1/2\in \mathbb Z_p 1/2∈Zp 写作 ∑ i ≥ 0 a i p i \sum_{i\ge 0}a_ip^i ∑i≥0aipi。
经过适当的预处理后,我们计算 [ x n ] p ( x ) f ( x ) a 0 f ( x p ) ∑ i ≥ 1 a i p i − 1 [x^n]p(x)f(x)^{a_0} f(x^p)^{\sum_{i\ge 1}a_ip^{i-1}} [xn]p(x)f(x)a0f(xp)∑i≥1aipi−1 这一过程。其复杂度为 Θ ( d 2 log p n ) \Theta(d^2\log_p n) Θ(d2logpn)。和 LibreOJ P577 简单算术一致。
如果是要求
0
∼
n
0\sim n
0∼n 的系数呢?设
g
(
x
)
2
=
f
(
x
)
g(x)^2 = f(x)
g(x)2=f(x),我们考虑等式
g
(
x
p
)
=
g
(
x
)
p
=
g
(
x
)
f
(
x
)
p
−
1
2
\begin{aligned} g(x^p) &= g(x)^p \\ &= g(x) f(x)^{\frac{p-1}2} \end{aligned}
g(xp)=g(x)p=g(x)f(x)2p−1
对于
p
∤
n
p\nmid n
p∤n 的时候,我们可以根据微分方程得到一个
Θ
(
d
)
\Theta(d)
Θ(d) 的递推式,而
p
∣
n
p\mid n
p∣n 的时候,我们
Θ
(
p
d
)
\Theta(pd)
Θ(pd) 进行计算,这里的贡献是
n
/
p
⋅
Θ
(
p
d
)
n/p \cdot \Theta(pd)
n/p⋅Θ(pd) 的。总共复杂度为
Θ
(
n
d
)
\Theta(nd)
Θ(nd)。
但是目前的计算复杂度总是依赖 p p p 有关的预处理,以及刚刚的问题中由于要计算 f ( x ) p − 1 2 f(x)^{\frac{p-1}2} f(x)2p−1,这个做法只能适用于度数小的多项式,而不能用于稀疏多项式。
5 月 11 日
但事实上昨天的问题对任意幂都可以等复杂度。由 g ( x ) = f ( x ) a 0 f ( x p ) ∑ i ≥ 1 a i p i − 1 g(x)=f(x)^{a_0}f(x^p)^{\sum_{i\ge 1}a_ip^{i-1}} g(x)=f(x)a0f(xp)∑i≥1aipi−1,我们只需将 f ( x ) ∑ i ≥ 1 a i p i − 1 f(x)^{\sum_{i\ge 1}a_ip^{i-1}} f(x)∑i≥1aipi−1 算到第 n / p n/p n/p 项,复杂度为 T ( n ) = Θ ( n d ) + T ( n / p ) T(n) = \Theta(nd) + T(n/p) T(n)=Θ(nd)+T(n/p) 也即 Θ ( n d ) \Theta(nd) Θ(nd)。
如何计算一个多项式进行 k k k 次求和后的系数?首先我们可以计算 ( x e x − 1 ) k \left(\frac x{e^x-1}\right)^k (ex−1x)k 的系数,因为一个多项式 f ( x ) f(x) f(x) 的 k k k 次不定求和可以直接用 1 ( e D − 1 ) k f \frac 1{(e^{\mathrm D}-1)^k} f (eD−1)k1f 刻画。但是我们还需要定出 c 0 + c 1 x + ⋯ + c k − 1 x k − 1 c_0 + c_1x + \cdots + c_{k-1}x^{k-1} c0+c1x+⋯+ck−1xk−1 这部分。
首先我们需要精确地定义出求和,常见左闭右开和左闭右闭。
- 左闭右开: f k + 1 ( x ) = ∑ 0 ≤ j < x f k ( j ) f_{k+1}(x) = \sum_{0\le j {\color{red}<} x} f_{k}(j) fk+1(x)=∑0≤j<xfk(j),我们注意在这个定义下 f k ( 0 ) , f k ( 1 ) , … , f k ( k − 1 ) = 0 f_k(0),f_k(1),\dots,f_k(k-1)=0 fk(0),fk(1),…,fk(k−1)=0,也就有 x k ‾ ∣ f k ( x ) x^{\underline k}\mid f_k(x) xk∣fk(x),这就简单了,对直接一次卷积得到的 f ^ k \hat f_k f^k 来说。我们减去 f ^ k m o d x k ‾ \hat f_k \bmod x^{\underline k} f^kmodxk 就得到了实际答案。
- 左闭右闭: f k + 1 ( x ) = ∑ 0 ≤ j ≤ x f k ( j ) f_{k+1}(x) = \sum_{0\le j {\color{red}\le} x} f_{k}(j) fk+1(x)=∑0≤j≤xfk(j),这里其实有 ( x + k ) k ‾ ∣ f k (x+k)^{\underline k} \mid f_k (x+k)k∣fk,一个简单的解释是 ( x j ) \binom x j (jx) 进行 k k k 次这样的求和后得到的是 ( x + k j + k ) \binom{x+k}{j+k} (j+kx+k),而这样的二项式线性组合出了原多项式。注意一开始我们要用 e k D ( e D − 1 ) k f \frac {e^{k\mathrm{D}}}{(e^{\mathrm D}-1)^k} f (eD−1)kekDf。
这样,我们就在 Θ ( M ( n + k ) ) \Theta(\mathsf{M}(n+k)) Θ(M(n+k)) 的时间内完成了。
5 月 12 日
尝试计算一些二项和问题。首先考虑
∑
k
(
2
k
k
)
(
n
n
−
2
k
)
=
[
x
n
]
1
1
−
4
x
2
(
1
+
x
)
n
=
[
x
n
]
1
1
−
4
(
x
1
−
x
)
2
1
1
−
x
=
[
x
n
]
1
1
−
2
x
−
3
x
2
\begin{aligned} & \quad \sum_{k} \binom{2k}k \binom{n}{n-2k}\\ &= [x^n] \frac 1{\sqrt{1-4x^2}} (1+x)^n\\ &= [x^n] \frac 1{\sqrt{1-4\left(\frac x{1-x}\right)^2}} \frac 1{1-x}\\ &= [x^n] \frac 1{\sqrt{1-2x-3x^2}} \end{aligned}
k∑(k2k)(n−2kn)=[xn]1−4x21(1+x)n=[xn]1−4(1−xx)211−x1=[xn]1−2x−3x21
这种二项和的 D-Finite 性质当然是显然的,我们更感兴趣的是其 Algebraic 性质。有了刚刚的式子之后,我们可以很容易地对任何奇素数
p
p
p 算其
m
o
d
p
\bmod p
modp 的任意一项了,因为设
f
(
x
)
=
(
1
−
2
x
−
3
x
2
)
p
−
1
2
f(x)=(1-2x-3x^2)^{\frac{p-1}2}
f(x)=(1−2x−3x2)2p−1,其次数是
p
−
1
p-1
p−1,递归过程没有除法。并且有
(
1
−
2
x
−
3
x
2
)
−
1
/
2
=
f
(
x
)
f
(
x
p
)
⋯
(1-2x-3x^2)^{-1/2} = f(x)f(x^p)\cdots
(1−2x−3x2)−1/2=f(x)f(xp)⋯
因此我们就有
a
n
≡
a
n
m
o
d
p
a
⌊
n
/
p
⌋
a_n \equiv a_{n\bmod p} a_{\lfloor n/p \rfloor}
an≡anmodpa⌊n/p⌋。
不过看起来对于处理形如
(
2
k
k
)
\binom {2k}k
(k2k) 来说,另一条思路可能更具前途。我们直接利用
(
2
k
k
)
=
[
x
0
]
(
1
+
x
)
2
k
x
−
k
\binom{2k}{k}=[x^0](1+x)^{2k}x^{-k}
(k2k)=[x0](1+x)2kx−k,就有
∑
k
(
2
k
k
)
(
n
n
−
2
k
)
=
∑
k
(
n
k
)
[
x
0
]
(
1
+
x
2
)
k
x
−
k
=
[
x
0
]
(
x
−
1
+
1
+
x
)
k
\begin{aligned} & \quad \sum_k \binom{2k}k \binom{n}{n-2k}\\ &= \sum_k \binom{n}k [x^0] (1+x^2)^k x^{-k}\\ &= [x^0] \left( x^{-1} + 1 + x \right)^k \end{aligned}
k∑(k2k)(n−2kn)=k∑(kn)[x0](1+x2)kx−k=[x0](x−1+1+x)k
那么如果我们模素数
p
p
p,就有
[
x
0
]
(
x
−
1
+
1
+
x
)
k
=
[
x
0
]
(
x
−
1
+
1
+
x
)
k
m
o
d
p
(
x
−
p
+
1
+
x
p
)
⌊
k
/
p
⌋
[x^0] \left( x^{-1} + 1 + x \right)^k = [x^0] \left( x^{-1} + 1 + x \right)^{k\bmod p} \left( x^{-p} + 1 + x^p \right)^{\lfloor k/p\rfloor}
[x0](x−1+1+x)k=[x0](x−1+1+x)kmodp(x−p+1+xp)⌊k/p⌋
发现两部分独立,可以直接分离了。这样的证明就是天然对 p = 2 p=2 p=2 也成立的。
我们又考虑稍微复杂点的组合式
∑
2
(
i
+
j
)
=
n
(
2
i
i
)
(
2
j
j
)
(
n
2
i
)
=
∑
i
(
n
i
)
[
x
0
]
(
x
−
1
+
x
)
i
[
y
0
]
(
y
−
1
+
y
)
n
−
i
=
[
x
0
y
0
]
(
x
−
1
+
x
+
y
−
1
+
y
)
n
=
[
u
0
v
0
]
(
(
u
−
1
+
u
1
)
(
v
−
1
+
v
1
)
)
n
x
=
u
v
,
y
=
u
/
v
=
(
n
n
/
2
)
2
\begin{aligned} &\quad \sum_{2(i+j) = n} \binom{2i}i \binom{2j}j \binom{n}{2i}\\ &= \sum_i \binom n i [x^0](x^{-1}+x)^i [y^0](y^{-1}+y)^{n-i}\\ &= [x^0y^0](x^{-1}+x+y^{-1}+y)^n\\ &= [u^0v^0]((u^{-1}+u^1)(v^{-1}+v^1))^n \quad x=uv, y = u/v\\ &= \binom{n}{n/2}^2 \end{aligned}
2(i+j)=n∑(i2i)(j2j)(2in)=i∑(in)[x0](x−1+x)i[y0](y−1+y)n−i=[x0y0](x−1+x+y−1+y)n=[u0v0]((u−1+u1)(v−1+v1))nx=uv,y=u/v=(n/2n)2
由此,我们可以尝试冲击一大类组合和式的同余性质了。设
m
m
m 阶整数拆分
λ
⊢
n
\lambda \vdash n
λ⊢n,那么设序列
a
k
=
k
!
[
x
k
]
(
∑
i
≥
0
x
λ
1
i
i
!
λ
1
)
⋯
(
∑
i
≥
0
x
λ
m
i
i
!
λ
m
)
a_k = k![x^k] \left( \sum_{i\ge 0} \frac{x^{\lambda_1 i}}{i!^{\lambda_1}} \right)\cdots \left( \sum_{i\ge 0} \frac{x^{\lambda_m i}}{i!^{\lambda_m}} \right)
ak=k![xk](i≥0∑i!λ1xλ1i)⋯(i≥0∑i!λmxλmi)
不难发现其是个整数数列,我们断言对任意素数
p
p
p 有
a
k
≡
a
k
m
o
d
p
a
⌊
k
/
p
⌋
(
m
o
d
p
)
a_k \equiv a_{k\bmod p} a_{\lfloor k/p \rfloor} \pmod p
ak≡akmodpa⌊k/p⌋(modp)
方法是我们进行构造,转化为数列
[
x
1
0
…
x
n
0
]
1
1
−
t
(
x
1
/
x
2
+
⋯
+
x
λ
1
−
1
/
x
λ
1
+
x
λ
1
/
x
1
)
−
⋯
[x_1^0\dots x_n^0] \frac 1{1-t(x_1/x_2 + \cdots + x_{\lambda_1-1}/x_{\lambda_1} + x_{\lambda_1}/x_1) - \cdots}
[x10…xn0]1−t(x1/x2+⋯+xλ1−1/xλ1+xλ1/x1)−⋯1
记
Q
(
t
,
x
1
,
…
,
x
n
)
=
1
−
t
(
x
1
/
x
2
+
⋯
+
x
λ
1
−
1
/
x
λ
1
+
x
λ
1
/
x
1
)
−
⋯
Q(t,x_1,\dots,x_n) = 1-t(x_1/x_2 + \cdots + x_{\lambda_1-1}/x_{\lambda_1} + x_{\lambda_1}/x_1) - \cdots
Q(t,x1,…,xn)=1−t(x1/x2+⋯+xλ1−1/xλ1+xλ1/x1)−⋯,那么由
[
x
1
0
…
x
n
0
]
1
Q
(
t
,
x
1
,
…
,
x
n
)
=
[
x
1
0
…
x
n
0
]
Q
(
t
,
x
1
,
…
,
x
n
)
p
−
1
Q
(
t
p
,
x
1
p
,
…
,
x
n
p
)
[x_1^0\dots x_n^0] \frac 1{Q(t,x_1,\dots,x_n)} = [x_1^0\dots x_n^0] \frac {Q(t,x_1,\dots,x_n)^{p-1}}{Q(t^p,x_1^p,\dots,x_n^p)}
[x10…xn0]Q(t,x1,…,xn)1=[x10…xn0]Q(tp,x1p,…,xnp)Q(t,x1,…,xn)p−1
观察系数即可得到结果。
5 月 16 日
「数据删除」
5 月 31 日
让我们继续扩展 UOJ 633 你将如闪电般归来。考虑将其拓展为输入一个度数为 d d d 的多项式 f ( x ) f(x) f(x)。
那么考虑
F
d
(
x
)
=
f
(
d
)
(
sinh
−
1
x
)
F_{d}(x) = f^{(d)}(\sinh^{-1} x)
Fd(x)=f(d)(sinh−1x)。那么就有
F
d
′
(
x
)
=
f
(
d
+
1
)
(
sinh
−
1
x
)
(
sinh
−
1
x
)
′
=
F
d
+
1
(
x
)
⋅
1
1
+
x
2
F
d
′
′
(
x
)
=
F
d
+
2
(
x
)
⋅
1
1
+
x
2
−
F
d
+
1
(
x
)
⋅
x
(
1
+
x
2
)
3
/
2
=
F
d
+
2
(
x
)
⋅
1
1
+
x
2
−
F
d
′
(
x
)
⋅
x
1
+
x
2
(
1
+
x
2
)
F
d
′
′
(
x
)
=
F
d
+
2
(
x
)
−
x
F
d
′
(
x
)
\begin{aligned} F_{d}'(x) &= f^{(d+1)}(\sinh^{-1} x) (\sinh^{-1}x)'\\ &= F_{d+1}(x) \cdot \frac 1{\sqrt{1+x^2}}\\ F_{d}''(x) &= F_{d+2}(x) \cdot \frac 1{1+x^2} - F_{d+1}(x) \cdot \frac x{(1+x^2)^{3/2}}\\ &= F_{d+2}(x) \cdot \frac 1{1+x^2} - F_d'(x) \cdot \frac x{1+x^2}\\ (1+x^2)F_{d}''(x) &= F_{d+2}(x) - xF_d'(x) \end{aligned}
Fd′(x)Fd′′(x)(1+x2)Fd′′(x)=f(d+1)(sinh−1x)(sinh−1x)′=Fd+1(x)⋅1+x21=Fd+2(x)⋅1+x21−Fd+1(x)⋅(1+x2)3/2x=Fd+2(x)⋅1+x21−Fd′(x)⋅1+x2x=Fd+2(x)−xFd′(x)
两边提取
[
x
n
]
[x^n]
[xn],得
(
n
+
2
)
(
n
+
1
)
f
d
,
n
+
2
+
n
(
n
−
1
)
f
d
,
n
=
f
d
+
2
,
n
−
n
f
d
,
n
(
n
+
2
)
(
n
+
1
)
f
d
,
n
+
2
+
n
2
f
d
,
n
=
f
d
+
2
,
n
\begin{aligned} (n+2)(n+1)f_{d,n+2} + n(n-1)f_{d,n} &= f_{d+2,n} - nf_{d,n}\\ (n+2)(n+1)f_{d,n+2} + n^2f_{d,n} &= f_{d+2,n} \end{aligned}
(n+2)(n+1)fd,n+2+n(n−1)fd,n(n+2)(n+1)fd,n+2+n2fd,n=fd+2,n−nfd,n=fd+2,n
进行
k
k
k 次积分,就有
f
d
,
n
=
(
n
+
k
)
k
‾
g
d
,
n
+
k
f_{d,n} = (n+k)^{\underline k}g_{d,n+k}
fd,n=(n+k)kgd,n+k。即得
(
n
+
2
)
(
n
+
1
)
(
n
+
k
+
2
)
k
‾
g
d
,
n
+
k
+
2
+
n
2
(
n
+
k
)
k
‾
g
d
,
n
+
k
=
(
n
+
k
)
k
‾
g
d
+
2
,
n
+
k
(
n
+
2
)
(
n
+
1
)
(
n
+
k
+
2
)
(
n
+
k
+
1
)
g
d
,
n
+
k
+
2
+
n
2
(
n
+
2
)
(
n
+
1
)
g
d
,
n
+
k
=
(
n
+
2
)
(
n
+
1
)
g
d
+
2
,
n
+
k
\begin{aligned} (n+2)(n+1) (n+k+2)^{\underline k}g_{d,n+k+2} + n^2 (n+k)^{\underline k}g_{d,n+k} &= (n+k)^{\underline k} g_{d+2,n+k}\\ (n+2)(n+1) (n+k+2)(n+k+1)g_{d,n+k+2} + n^2 (n+2)(n+1)g_{d,n+k} &= (n+2)(n+1) g_{d+2,n+k} \end{aligned}
(n+2)(n+1)(n+k+2)kgd,n+k+2+n2(n+k)kgd,n+k(n+2)(n+1)(n+k+2)(n+k+1)gd,n+k+2+n2(n+2)(n+1)gd,n+k=(n+k)kgd+2,n+k=(n+2)(n+1)gd+2,n+k
约分后有
n
(
n
−
1
)
g
d
,
n
+
(
n
−
k
−
2
)
2
g
d
,
n
−
2
=
g
d
+
2
,
n
−
2
+
C
1
δ
n
−
k
−
1
+
C
2
δ
n
−
k
n(n-1)g_{d,n} + (n-k-2)^2g_{d,n-2} = g_{d+2,n-2} + C_1\delta_{n-k-1} + C_2\delta_{n-k}
n(n−1)gd,n+(n−k−2)2gd,n−2=gd+2,n−2+C1δn−k−1+C2δn−k
有微分方程
k
2
G
d
(
x
)
+
(
1
−
2
k
)
x
G
d
′
(
x
)
+
(
1
+
x
2
)
G
d
′
′
(
x
)
=
G
d
+
2
(
x
)
+
C
1
x
k
−
1
+
C
2
x
k
−
2
k^2 G_d(x) + (1-2k)xG_d'(x) + (1+x^2)G_d''(x) = G_{d+2}(x) + C_1x^{k-1} + C_2x^{k-2}
k2Gd(x)+(1−2k)xGd′(x)+(1+x2)Gd′′(x)=Gd+2(x)+C1xk−1+C2xk−2
令
X
=
x
−
1
/
x
2
,
H
d
(
x
)
=
G
d
(
X
)
X=\frac{x-1/x}2,H_d(x)=G_d(X)
X=2x−1/x,Hd(x)=Gd(X),有
k
2
(
1
+
x
2
)
H
d
(
x
)
+
(
(
1
+
2
k
)
x
+
(
1
−
2
k
)
x
3
)
H
d
′
(
x
)
+
(
x
2
+
x
4
)
H
d
′
′
(
x
)
=
(
G
d
+
2
(
x
)
+
C
1
X
k
−
1
+
C
2
X
k
−
2
)
(
1
+
x
2
)
\begin{aligned} &\quad k^2(1+x^2)H_d(x)\\ &+((1+2k)x+(1-2k)x^3)H_d'(x)\\ &+(x^2+x^4)H_d''(x)\\ &= (G_{d+2}(x) + C_1X^{k-1} + C_2X^{k-2})(1+x^2) \end{aligned}
k2(1+x2)Hd(x)+((1+2k)x+(1−2k)x3)Hd′(x)+(x2+x4)Hd′′(x)=(Gd+2(x)+C1Xk−1+C2Xk−2)(1+x2)
可以预见的是,这是一个 Θ ( d 2 k ) \Theta(d^2 k) Θ(d2k) 求系数的算法。能不能把 d d d 去掉一个,怀疑这涉及到某种非常深刻的矛盾,今天先到这里。
6 月 12 日
考虑证明一个恒等式:
[ x n y n ] ( 1 + x ) k ( 1 + y ) l ( 1 − x y ) − k − l − 1 = ( n + k n ) ( n + l n ) [x^ny^n] (1+x)^k (1+y)^l (1-xy)^{-k-l-1} = \binom{n+k}n\binom{n+l}n [xnyn](1+x)k(1+y)l(1−xy)−k−l−1=(nn+k)(nn+l)
我们首先考虑扩元,用 u , v u,v u,v 统计 k , l k,l k,l 的次数:
= [ x n y n u k v l ] 1 1 − u ( 1 + x ) / ( 1 − x y ) 1 1 − v ( 1 + y ) / ( 1 − x y ) 1 1 − x y = [ x n y n u k v l ] 1 1 − x y − u ( 1 + x ) 1 1 − x y − v ( 1 + y ) ( 1 − x y ) \begin{aligned} &= [x^ny^nu^kv^l] \frac 1{1-u(1+x)/(1-xy)}\frac 1{1-v(1+y)/(1-xy)} \frac 1{1-xy}\\ &= [x^ny^nu^kv^l] \frac 1{1-xy-u(1+x)}\frac 1{1-xy-v(1+y)} (1-xy) \end{aligned} =[xnynukvl]1−u(1+x)/(1−xy)11−v(1+y)/(1−xy)11−xy1=[xnynukvl]1−xy−u(1+x)11−xy−v(1+y)1(1−xy)
考虑约束的
x
n
y
n
x^ny^n
xnyn,我们换元
x
=
s
t
,
y
=
t
−
1
x=st,y=t^{-1}
x=st,y=t−1,就有
=
1
1
−
s
−
u
(
1
+
s
t
)
1
1
−
s
−
v
(
1
+
t
−
1
)
(
1
−
s
)
=
1
1
−
u
s
t
/
(
1
−
s
−
u
)
1
1
−
s
−
u
1
1
−
v
t
−
1
/
(
1
−
s
−
v
)
1
1
−
s
−
v
(
1
−
s
)
\begin{aligned} &= \frac1{1-s-u(1+st)}\frac 1{1-s-v(1+t^{-1})}(1-s)\\ &= \frac1{1-ust/(1-s-u)} \frac 1{1-s-u} \frac 1{1-vt^{-1}/(1-s-v)} \frac 1{1-s-v} (1-s) \end{aligned}
=1−s−u(1+st)11−s−v(1+t−1)1(1−s)=1−ust/(1−s−u)11−s−u11−vt−1/(1−s−v)11−s−v1(1−s)
那么提取
[
t
0
]
[t^0]
[t0] 就有
=
1
1
−
u
v
s
(
1
−
s
−
u
)
(
1
−
s
−
v
)
1
1
−
s
−
u
1
1
−
s
−
v
(
1
−
s
)
=
1
−
s
(
1
−
s
−
u
)
(
1
−
s
−
v
)
−
u
v
s
=
1
−
s
(
1
−
s
)
2
−
(
u
+
v
)
(
1
−
s
)
+
u
v
(
1
−
s
)
=
1
1
−
s
−
u
−
v
−
u
v
=
1
(
1
−
u
)
(
1
−
v
)
1
1
−
s
(
1
−
u
)
(
1
−
v
)
[
s
n
u
k
v
l
]
∙
=
(
n
+
k
n
)
(
n
+
l
n
)
\begin{aligned} &= \frac1{1-\frac{uvs}{(1-s-u)(1-s-v)}} \frac 1{1-s-u} \frac 1{1-s-v} (1-s)\\ &= \frac {1-s}{(1-s-u)(1-s-v)-uvs}\\ &= \frac {1-s}{(1-s)^2 -(u+v)(1-s) + uv(1-s)}\\ &= \frac 1{1-s-u-v-uv}\\ &= \frac 1{(1-u)(1-v)} \frac 1{1-\frac s{(1-u)(1-v)}}\\ [s^nu^kv^l] \bullet &= \binom {n+k}n \binom{n+l}n \end{aligned}
[snukvl]∙=1−(1−s−u)(1−s−v)uvs11−s−u11−s−v1(1−s)=(1−s−u)(1−s−v)−uvs1−s=(1−s)2−(u+v)(1−s)+uv(1−s)1−s=1−s−u−v−uv1=(1−u)(1−v)11−(1−u)(1−v)s1=(nn+k)(nn+l)