「日志 2021.7.2」排列是离散的极限

有正整数 N , m , k N,m,k N,m,k,问有多少长为 N N N 的序列 h h h,满足 1 ≤ h i ≤ m 1\le h_i\le m 1him,且 h i < h i + 1 h_i<h_{i+1} hi<hi+1 的位置恰有 k k k 个。

这个问题无非就是离散情况的欧拉数,我们把 GF 算出来:

我们首先注意到有 k k k < < < 就是说序列被 ≥ \ge 分割为了 n − k n-k nk 段。考查二元 GF 的基本单位,我们需要对每个间隔进行容斥,就有
∑ n ∑ j ( n − 1 j − 1 ) ( − 1 ) j − 1 ( m n ) x n t j = t ∑ n ≥ 1 ( m n ) x n ( 1 − t ) n − 1 = t ( 1 + x ( 1 − t ) ) m − 1 1 − t \begin{aligned} &\quad \sum_n\sum_j\binom{n-1}{j-1} (-1)^{j-1} \binom m n x^nt^j\\ &= t\sum_{n\ge 1} \binom m n x^n (1-t)^{n-1}\\ &= t\frac{ (1+x(1-t))^m -1 }{1-t} \end{aligned} nj(j1n1)(1)j1(nm)xntj=tn1(nm)xn(1t)n1=t1t(1+x(1t))m1
我们就得到了整个序列的 GF: 1 1 − t ( 1 + x ( 1 − t ) ) m − 1 1 − t = 1 − t 1 − t ( 1 + x ( 1 − t ) ) m \frac 1{1-t\frac{ (1+x(1-t))^m -1 }{1-t}}=\frac{1-t}{1-t(1+x(1-t))^m} 1t1t(1+x(1t))m11=1t(1+x(1t))m1t

等等……我们知道,Eulerian 数的 EGF 是 1 − t 1 − t e ( 1 − t ) x \frac{1-t}{1-te^{(1-t)x}} 1te(1t)x1t

这长得好像挺像的?

我们知道,排列可以看成随机实数,那么我们可以令 m → + ∞ m\rightarrow +\infty m+ 算概率去逼近。

不严谨地操作,就有

lim ⁡ m → + ∞ 1 − t 1 − t ( 1 + x m ( 1 − t ) ) m = 1 − t 1 − t lim ⁡ m → + ∞ ( 1 + x m ( 1 − t ) ) m = 1 − t 1 − t e ( 1 − t ) x \begin{aligned} &\quad \lim_{m\rightarrow +\infty} \frac{1-t}{1-t(1+\frac xm(1-t))^m}\\ &= \frac{1-t}{1-t \lim_{m\rightarrow +\infty}(1+\frac xm(1-t))^m} \\ &= \frac{1-t}{1-te^{(1-t)x}} \end{aligned} m+lim1t(1+mx(1t))m1t=1tlimm+(1+mx(1t))m1t=1te(1t)x1t

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值