重新发现 Calkin‘s identity

考虑和式 ∑ i = 0 n − 1 ( ∑ j = 0 i ( n j ) ) 3 \sum_{i=0}^{n-1} \left(\sum_{j=0}^i \binom n j\right)^3 i=0n1(j=0i(jn))3 的结果。

设答案为 S S S,我们考虑另一个和式:

∑ i , j , k ( n i ) ( n j ) ( n k ) ⋅ ( max ⁡ { i , j , k } − min ⁡ { i , j , k } ) \sum_{i,j,k}\binom n i \binom n j \binom n k \cdot \left( \max\{i,j,k\} - \min\{i,j,k\} \right) i,j,k(in)(jn)(kn)(max{i,j,k}min{i,j,k})

它有一种算法,就是枚举每个间隔,假设 [ i , i + 1 ] [i,i+1] [i,i+1] 这个间隔在 max ⁡ − min ⁡ \max - \min maxmin 内,有 2 3 n − ( ∑ j = 0 i ( n j ) ) 3 − ( ∑ j = 0 n − i − 1 ( n j ) ) 3 2^{3n} - \left(\sum_{j=0}^i \binom n j\right)^3 - \left(\sum_{j=0}^{n-i-1} \binom n j\right)^3 23n(j=0i(jn))3(j=0ni1(jn))3 种方案,这是容斥掉在它两边的情况得到的。对 i i i 求和,得到的就是 n 2 3 n − 2 S n2^{3n} - 2S n23n2S

另一种算法,是考虑到一个优秀的性质: 2 ( max ⁡ { i , j , k } − min ⁡ { i , j , k } ) = ∣ i − j ∣ + ∣ j − k ∣ + ∣ k − i ∣ 2(\max\{i,j,k\} - \min\{i,j,k\}) = |i - j| + |j - k| + |k - i| 2(max{i,j,k}min{i,j,k})=ij+jk+ki

这样一来,和式就被变成了只和两个变量独立的情况。也就是

∑ i , j , k ( n i ) ( n j ) ( n k ) ⋅ ( max ⁡ { i , j , k } − min ⁡ { i , j , k } ) = 3 2 ⋅ 2 n ∑ i , j ( n i ) ( n j ) ∣ i − j ∣ \sum_{i,j,k}\binom n i \binom n j \binom n k \cdot \left( \max\{i,j,k\} - \min\{i,j,k\} \right) = \frac 3 2 \cdot 2^n \sum_{i,j} \binom n i \binom n j |i - j| i,j,k(in)(jn)(kn)(max{i,j,k}min{i,j,k})=232ni,j(in)(jn)ij

后者的推导并不困难:

∑ i , j ( n i ) ( n j ) ∣ i − j ∣ = 2 ∑ i ≥ j ( n i ) ( n j ) ( i − j ) = 2 n ∑ i ≥ j [ ( n − 1 i − 1 ) ( n j ) − ( n i ) ( n − 1 j − 1 ) ] = 2 n ∑ d ≥ 0 ∑ d = i − j [ ( n − 1 j + d − 1 ) ( n n − j ) − ( n j + d ) ( n − 1 n − j ) ] = 2 n ∑ d ≥ 0 [ ( 2 n − 1 n + d − 1 ) − ( 2 n − 1 n + d ) ] = 2 n ( 2 n − 1 n − 1 ) = n ( 2 n n ) \begin{aligned} & \quad \sum_{i,j} \binom n i \binom n j |i - j| \\ & = 2\sum_{i\ge j} \binom n i \binom n j (i - j) \\ & = 2n\sum_{i\ge j} \left[ \binom {n-1}{i - 1} \binom n j - \binom n i \binom{n - 1}{j - 1} \right]\\ & = 2n\sum_{d \ge 0} \sum_{d = i - j} \left[ \binom {n-1}{j + d - 1} \binom n {n - j} - \binom n {j + d} \binom{n - 1}{n - j} \right]\\ & = 2n\sum_{d \ge 0} \left[ \binom {2n-1}{n + d - 1} - \binom{2n - 1}{n + d} \right]\\ & = 2n \binom{2n-1}{n-1} = n\binom{2n}{n} \end{aligned} i,j(in)(jn)ij=2ij(in)(jn)(ij)=2nij[(i1n1)(jn)(in)(j1n1)]=2nd0d=ij[(j+d1n1)(njn)(j+dn)(njn1)]=2nd0[(n+d12n1)(n+d2n1)]=2n(n12n1)=n(n2n)

联立两式,我们就有

3 2 ⋅ 2 n ⋅ n ( 2 n n ) = n 2 3 n − 2 S S = n 2 3 n − 1 − 3 n ⋅ 2 n − 2 ( 2 n n ) \begin{aligned} \frac 3 2 \cdot 2^n \cdot n \binom {2n}n &= n2^{3n} - 2S\\ S &= n 2^{3n - 1} - 3n \cdot 2^{n-2} \binom{2n}{n} \end{aligned} 232nn(n2n)S=n23n2S=n23n13n2n2(n2n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值