半导体物理软件实验
半导体中电子浓度随温度的变化
实验原理阐述
实验目的
- 理解载流子浓度随温度变化的原理。
- 了解Medici软件的功能及其基本使用方法。
- 掌握半导体内费米能级、载流子浓度的求解、电中性条件和低温不完全电离。
- 利用Medici软件仿真n型半导体的结构的电子浓度随温度变化关系。
- 在半导体两端加电压,设置温度,输出并记录载流子浓度。
基本原理
(1)、载流子浓度随温度变化基本原理
图1给出了载流子随温度变化的示意图,随着温度的升高,载流子浓度主要分为三个阶段:
- 低温弱电离区。当温度很低时,大部分施主杂质能级仍为电子所占据,只有很少量施主杂质发生电离,这少量的电子进入了导带,从价带中依靠本征激发跃迁至导带的电子数就更少了。换言之,这一情况下导带中的电子全部由电离施主杂质所提供。温度升高,施主杂质电离加剧,导带中的电子浓度随之增高;
- 强电离区。当温度升高到一定程度时,施主或受主杂质全部电离,以N型半导体为例,此时导带中的载流子基本由施主能级电离出的电子跃迁至导带提供,本征激发的电子浓度微乎其微,因此在这段区间以内,载流子浓度与温度无关,始终等于掺杂浓度。载流子浓度保持等于杂质浓度的这一温度范围称为饱和区。
- 高温本征激发区。继续升高温度,使本征激发产生的本征载流子数远多于杂质电离产生的载流子数,这种情况与未掺杂的本征半导体情形一样。这时费米能级接近禁带中线,而载流子浓度随温度升高而迅速增加。显然,杂质浓度越高,达到本征激发起主要作用的温度也越高。
由状态密度乘以电子占据能级的概率可知电离施主浓度为:
电离受主浓度为:
由上述两个公式可以看出,杂质能级与费米能级的相对位置反映了电子和空穴占据杂质能级的情况,即当费米能级远在ED之下时,可以认为施主杂质几乎全部电离。反之,EF远在ED之上时,施主杂质基本没有电离。
以n型半导体为例,其导带中的电子为负电荷,发生了电离的施主杂质带正电荷,价带中的空穴带正电荷,因此电中性条件为:
由于在低温弱电离区很少发生本征激发,为便于计算,将电中性条件写为
n0 = nD+,又因为nD+远小于ND,简化得:
从公式可以推出,温度从0 K上升时,费米能级上升得很快,但速度越来越慢,达到极值后费米能级开始下降。
当费米能级下降到施主能级之下时,大部分施主杂质都发生电离,此时为强电离区
由于Nc大于ND,第二项为负。在一定温度的时候,ND越大,EF就越向导带方面靠近。而在ND一定时,温度越高,EF就越向本征费米能级Ei方面靠近。
当温度足够高时,从价带热激发的电子跃迁到导带,使导带电子浓度再次增加,并随着温度的不断上升,激发的电子数目持续增加。
Medici仿真代码
title concentration
mesh //初始化网格的生成
x.mesh width=5 h1=0.1 //描述X方向网格0~5距离网格间隔0.1微米均匀分布
y.mesh loc=-.1 n=1 //设定Y方向第一条网格线在-0.1
y.mesh loc=0 n=2 //设定Y方向第二条网格线在0,定义氧化层厚度
y.mesh depth=1.1 h1=0.1 //描述Y方向网格0~1.1距离网格间隔0.1微米均匀分布
regi silicon //定义区域的材料为硅
elec name=A y.max=0 //描述电极的名字为A位置在Y方向0处
elec name=K y.min=1 //描述电极的名字为K位置在Y方向1处
elec name=sink thermal top //描述电极的名字为sink thermal放在表面
elec name=sink thermal bot //描述电极的名字为sink thermal放在底部
prof n.type uniform concen=1.6031e14 //设置N型掺杂浓度为1.6031e14
regrid doping ratio=2 smooth=1 //输出结构图形设置平滑度为1,各区域边界不变
plot.2d grid title="initial grid" fill scale
//输出二维图形标题为initial grid,fill表示不同区域用颜色填充
plot.2d grid title="grid" fill
//输出二维图形标题为grid,参数grid表示显示网表
model incomple temperature=6 //设置初始模拟温度为6K
symb car=2 lat.temp coup.lat //输入算法
meth itlimit=20
impurity name=n-type silicon GB=2 EB0=60e-3
//定义杂质类型为N型适用于所有SI简并度为2,杂质电离能为60e-3eV
solve //在零偏条件下获得解
extract expr=@n name=n0 condi=(@x=5&&@y=0.5) print
extract expr=@t(sink) name=T condi=(@x=5&&@y=0.5) print
loop steps=400 //设置一个循环步数为400
assign name=k n.value=6 del=2 //变量名为k从6开始步长为2
solve T(sink)=@k
l.end
plot.1d x.ax=T y.ax=n0 sym=15 color=3 left=0 out.f=n02(T) //显示参数的一维变化
matlab理论仿真
syms t;
syms x;
k=1.38e-23;
ec=1.12;
ev=0;
q=1.602e-19;
nc=(5.28e21.*t.^(3/ 2)).*1e-6;
nv=(2.186e21.*t.^(3/2)).*1e-6;
nd=1.6031e16; %设置掺杂浓度
ed=1.06;
T=6:2:700;
a=2.*nc.*exp(((-ec-ed).*q)./(k.*t));
b=nc.*exp(((-ec).*q)./(k.*t));
c=2.*nv.*exp(((ev-ed).*q)./(k.*t))+nd;
d=nv.*exp((ev.*q)./(k.*t));
eqn=a.*x^3+b.*x^2-c.*x-d==0;
[d]=solve(eqn,x);
d(2);
ef=(k.*t.*log(d(2)))./q;
y=nc.*exp(((ef-ec).*q)./(k.*t));
z=subs(y,t,T);
r=double(z);
figure
semilogy(T,z)
半导体中迁移率随电场的变化
实验原理阐述
实验目的
- 理解载流子迁移率随电场变化的基本原理。
- 了解Medici软件的功能及其基本使用方法。
- 掌握不同电场范围下迁移率的变化规律。
- 利用Medici仿真n型半导体结构在不同电场下的状态并求得其迁移率变化。
- 在半导体两端加电压,输出并记录载流子迁移率和漂移速度。
基本原理
半导体中迁移率随电场的变化关系基本原理:
- 电场不太强时,电流密度与电场强度关系服从欧姆定律,对于给定的材料,电导率是常数,与电场无关,平均漂移速度与电场强度成正比,迁移率大小与电场无关。但是当电场强度增加到10 ^5 V/cm以上时,电流大小与电场强度不再成正比,偏离了欧姆定律,这时电导率不再是常数随电场而改变。
- 分析强电场下欧姆定律发生偏离的原因,主要可以从载流子与晶格振动散射时的能量交换过程来说明。在没有外加电场情况下,载流子和晶格散射时,将吸收声子或发射声子,与晶格交换动量和能量,交换的净能量为零,载流子的平均能量与晶格的相同,两者处于热平衡状态。
- 在电场存在时,载流子从电场中获得能量,随后又以发射声子的形式将能量传给晶格,这时,平均的说,载流子发射的声子数多于吸收的声子数。到达稳定状态时,单位时间载流子从电场中获得的能量同给予晶格的能量相同。但是,在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子和晶格系统不再处于热平衡状态。温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,引入载流子的有效温度Te来描写晶格系统不处于热平衡状态的载流子,并称这种状态的载流子为热载流子。所以在强电场情况下,载流子温度Te比晶格温度T高,载流子的平均能量比晶格的大。热载流子与晶格散射时,由于热载流子能量高,速度大于热平衡状态下的速度,由平均自由时间等于平均自由程除以载流子速度看出,在平均自由程不变的情况下,平均自由时间减小,因而迁移率降低。
- 当电场不是很强时,载流子主要和声学波散射,迁移率有所降低。当电场进一步增强,载流子能量高到可以和光学波声子能量相比时,散射时可以发射光学波声子,于是载流子获得的能量大部分又消失,因而平均漂移速度可以达到饱和。
- 图2所示为锗、硅的平均漂移速度与电场强度的关系。从图中可以看出当电场不强时平均漂移速度与电场强度呈线性关系,而后斜率减小,最终漂移速度达到饱和
Medici仿真代码
title mobility/velocity
mesh //初始化网格的生成
x.mesh width=5 h1=0.1 //描述X方向网格0~5距离网格间隔0.1微米均匀分布
y.mesh loc=-.1 n=1 //设定Y方向第一条网格线在-0.1
y.mesh loc=0 n=2 //设定Y方向第二条网格线在0,定义氧化层厚度
y.mesh depth=1.1 h1=0.1 //描述Y方向网格0~1.1距离网格间隔0.1微米均匀分布
regi silicon //定义区域的材料为硅
elec name=A y.max=0 //描述电极的名字为A位置在Y方向0处
elec name=K y.min=1 //描述电极的名字为K位置在Y方向1处
prof n.type uniform concen=1.6031e14 //设置N型掺杂浓度为1.6031e14
regrid doping ratio=2 smooth=1 //输出结构图形
plot.2d grid title="initial grid" fill scale //输出二维图形标题为initial grid
plot.2d grid title="grid" fill //输出二维图形标题为grid
model analytic fldmob //输入算法
symb car=2
meth itlimit=20
solve //在零偏条件下获得解
extract expression=@n.mobil name=mun condition=(@x=5&&@y=0.5) print
extract expression=@em name=Em condition=(@x=5&&@y=0.5) print
extract expression=@em*@n.mobil name=vd condition=(@x=5&&@y=0.5) print
solve
solve elec=A vstep=0.01 nstep=100
solve elec=A vstep=0.1 nstep=90
solve elec=A vstep=1 nstep=90
solve elec=A vstep=2 nstep=50
solve elec=A vstep=6 nstep=50
plot.1d x.ax=Em y.ax=mun sym=2 out.f=mun(E) x.log //输出一维图形结果
plot.1d x.ax=Em y.ax=vd sym=2 out.f=vd(E) x.log y.log
plot.1d x.ax=Em y.ax=mun sym=2 color=2 left=-1e6 bot=-0.25e3 out.f=mun2(E)
plot.1d x.ax=Em y.ax=vd sym=2 color=3 left=-1e5 right=2e5 out.f=vd2(E)
matlab理论仿真
mum_min=55.25;
mum_max=1429.23;
nrefn=1.072e17;
nrefn_2=1e30;
num=-2.3;
xin=-3.8;
a=0.73;
b=2;
N=1.6031e16;
T=25+273.15;
E=0:1000:1e6;
u_n=(mum_min + mum_max*(T/300)^num - mum_min)/1+(T/300)^xin*((N/nrefn)^a +(N/nrefn_2)^3);
v_sat=2.4*10^7/1+0.8*exp(T/600);
u=u_n./(1+(u_n.*E./v_sat).^b).^(1./b);
figure(1)
subplot(2,1,1);
plot(E,u,'-ro','MarkerSize',2);
grid on % 网格
title('迁移率\mu');
xlabel('E(V/cm)');
ylabel('\mu(cm^2/Vs)');
vel=u.*E;
subplot(2,1,2);
plot(E,vel,'-b*','MarkerSize',2);
grid on
title('漂移速度');
xlabel('E(V/cm)');
ylabel('vd(cm/s)');
效果展示:
附录
本文章用于记录半导体物理软件实验,实验代码来自同组同学,关于MIS结构的实验代码还在整理当中,将会尽快补充。